67 research outputs found
Zur Elastostatik des gebetteten Kreisringbalkens
Beim schlanken kreisfÜrmig geschlossenen schubstarren Balken auf nachgiebiger, vorgespannter Bettung zeigt sich die bekannte Konzentration der Verschiebung in der Umgebung der radial eingeleiteten Einzelkraft. Hier wird zusätzlich die lastinvariante Länge des Kreisbalkens berßcksichtigt und das physikalisch nahe liegende Phänomen, dass die Bettung auch eine tangentiale Steifigkeit haben kann. Dann ergeben sich ein deutlich verändertes Verschiebungsfeld und ein steiferes System
Mathematisches Modell zur Simulation von Schwingungen an Horizontalachs-Windkraftanlagen
 
Discrete Routh Reduction
This paper develops the theory of abelian Routh reduction for discrete
mechanical systems and applies it to the variational integration of mechanical
systems with abelian symmetry. The reduction of variational Runge-Kutta
discretizations is considered, as well as the extent to which symmetry
reduction and discretization commute. These reduced methods allow the direct
simulation of dynamical features such as relative equilibria and relative
periodic orbits that can be obscured or difficult to identify in the unreduced
dynamics. The methods are demonstrated for the dynamics of an Earth orbiting
satellite with a non-spherical correction, as well as the double
spherical pendulum. The problem is interesting because in the unreduced
picture, geometric phases inherent in the model and those due to numerical
discretization can be hard to distinguish, but this issue does not appear in
the reduced algorithm, where one can directly observe interesting dynamical
structures in the reduced phase space (the cotangent bundle of shape space), in
which the geometric phases have been removed. The main feature of the double
spherical pendulum example is that it has a nontrivial magnetic term in its
reduced symplectic form. Our method is still efficient as it can directly
handle the essential non-canonical nature of the symplectic structure. In
contrast, a traditional symplectic method for canonical systems could require
repeated coordinate changes if one is evoking Darboux' theorem to transform the
symplectic structure into canonical form, thereby incurring additional
computational cost. Our method allows one to design reduced symplectic
integrators in a natural way, despite the noncanonical nature of the symplectic
structure.Comment: 24 pages, 7 figures, numerous minor improvements, references added,
fixed typo
- âŚ