50 research outputs found

    Monocyte chemoattractant protein-1/CCL2 produced by stromal cells promotes lung metastasis of 4T1 murine breast cancer cells

    Get PDF
    MCP-1/CCL2 plays an important role in the initiation and progression of cancer. Since tumor cells produce MCP-1, they are considered to be the main source of this chemokine. Here, we examined whether MCP-1 produced by non-tumor cells affects the growth and lung metastasis of 4T1 breast cancer cells by transplanting them into the mammary pad of WT or MCP-1−/− mice. Primary tumors at the injected site grew similarly in both mice; however, lung metastases were markedly reduced in MCP-1−/− mice, with significantly longer mouse survival. High levels of MCP-1 mRNA were detected in tumors growing in WT, but not MCP-1−/− mice. Serum MCP-1 levels were increased in tumor-bearing WT, but not MCP-1−/− mice. Transplantation of MCP-1−/− bone marrow cells into WT mice did not alter the incidence of lung metastasis, whereas transplantation of WT bone marrow cells into MCP-1−/− mice increased lung metastasis. The primary tumors of MCP-1−/− mice consistently developed necrosis earlier than those of WT mice and showed decreased infiltration by macrophages and reduced angiogenesis. Interestingly, 4T1 cells that metastasized to the lung constitutively expressed elevated levels of MCP-1, and intravenous injection of 4T1 cells producing a high level of MCP-1 resulted in increased tumor foci in the lung of WT and MCP-1−/− mice. Thus, stromal cell-derived MCP-1 in the primary tumors promotes lung metastasis of 4T1 cells, but tumor cell-derived MCP-1 can also contribute once tumor cells enter the circulation. A greater understanding of the source and role of this chemokine may lead to novel strategies for cancer treatment

    Triptolide, a constituent of immunosuppressive Chinese herbal medicine, is a potent suppressor of dendritic-cell maturation and trafficking

    No full text
    Triptolide (TPT) is a chemically defined, potent immunosuppressive compound isolated from an anti-inflammatory Chinese herbal medicine. TPT has been reported to inhibit autoimmunity, allograft rejection, and graft-versus-host disease (GVHD), and its efficacy was previously attributed to the suppression of T cells. Since dendritic cells (DCs) play a major role in the initiation of T-cell–mediated immunity, we studied the effects of TPT on the phenotype, function, and migration of human monocyte–derived DCs. TPT treatment, over a pharmacologic concentration range, inhibited the lipopolysaccharide (LPS)–induced phenotypic changes, characteristic of mature DCs and the production of interleukin-12p(70) (IL-12p(70)). Consequently, the allostimulatory functions of DCs were impaired by TPT treatment. Furthermore, the calcium mobilization and chemotactic responses of LPS-stimulated DCs to secondary lymphoid tissue chemokine (SLC)/CC chemokine ligand 21 (CCL21) were significantly lower in TPT-treated than untreated DCs, in association with lower chemokine receptor 7 (CCR7) and higher CCR5 expression. Egress of Langerhans cells (LCs) from explanted mouse skin in response to macrophage inflammatory protein-3β (MIP-3β)/CCL19 was arrested by TPT. In vivo administration of TPT markedly inhibited hapten (fluorescein isothiocyanate [FITC])–stimulated migration of mouse skin LCs to the draining lymph nodes. These data provide new insight into the mechanism of action of TPT and indicate that the inhibition of maturation and trafficking of DCs by TPT contributes to its immunosuppressive effects

    Negative regulation of CXCR4-mediated chemotaxis by the lipid phosphatase activity of tumor suppressor PTEN

    No full text
    Phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a multifunctional tumor suppressor, has been shown to play a regulatory role in cell migration. Dictyostelium discoideum cells lacking PTEN exhibited impaired migration toward chemoattractant gradients. In the present study, we investigated the involvement of PTEN in chemotaxis of mammalian cells by examining PTEN-null Jurkat T cells. We observed that, in contrast to observations made in D discoideum, PTEN-null Jurkat T cells exhibited potent chemotactic responses to the chemokine stromal cell–derived factor 1α (SDF-1α), indicating that PTEN was not requisite for CXC chemokine receptor 4 (CXCR4)–mediated chemotaxis of Jurkat cells. Conversely, reconstitution of PTEN in Jurkat cells by using a tetracycline (Tet-on)–inducible expression system down-regulated CXCR4-mediated chemotaxis. Furthermore, we established the lipid phosphatase activity of PTEN as essential for its inhibitory effect on chemotaxis. In addition, using PTEN-expressing T-cell lines and primary T cells, we demonstrated that down-regulation of PTEN expression with vector-based small interfering RNAs (siRNAs) enhanced CXCR4-mediated chemotaxis. Based on these results, we conclude that PTEN expression negatively regulates chemotaxis of lymphoid mammalian cells via its lipid phosphatase activity. Our findings may account for the reported increase in metastatic activity of PTEN-null tumor cells
    corecore