78 research outputs found

    Gravitational and electromagnetic fields of a charged tachyon

    Full text link
    An axially symmetric exact solution of the Einstein-Maxwell equations is obtained and is interpreted to give the gravitational and electromagnetic fields of a charged tachyon. Switching off the charge parameter yields the solution for the uncharged tachyon which was earlier obtained by Vaidya. The null surfaces for the charged tachyon are discussed.Comment: 8 pages, LaTex, To appear in Pramana- J. Physic

    On the Foundation of the Relativistic Dynamics with the Tachyon

    Full text link
    The theoretical foundation of the object moving faster than light in vacuum ({\it tachyon}) is still missing or incomplete. Here we present the classical foundation of the relativistic dynamics including the tachyon. An anomalous sign-factor extracted from the transformation of 1−u2/c2{ \sqrt{1-u^{2}/c^{2} } } under the Lorentz transformation, which has been always missed in the usual formulation of the tachyon, has a crucial role in the dynamics of the tachyon. Due to this factor the mass of the tachyon transforms in the unusual way although the energy and momentum, which are defined as the conserved quantities in all uniformly moving systems, transform in the usual way as in the case of the object moving slower than light ({\it bradyon}). We show that this result can be also obtained from the least action approach. On the other hand, we show that the ambiguities for the description of the dynamics for the object moving with the velocity of light ({\it luxon}) can be consistently removed only by introducing a new dynamical variable. Furthermore, by using the fundamental definition of the momentum and energy we show that the zero-point energy for any kind of the objects, {\it i.e.}, the tachyon, bradyon, and luxon, which has been known as the undetermined constant, should satisfy some constraints for consistency, and we note that this is essentially another novel relativistic effect. Finally, we remark about the several unsolved problems.Comment: 39 pages, latex, 15 figures avaliable upon reques

    Causal paradoxes: a conflict between relativity and the arrow of time

    Full text link
    It is often argued that superluminal velocities and nontrivial spacetime topologies, allowed by the theory of relativity, may lead to causal paradoxes. By emphasizing that the notion of causality assumes the existence of a time arrow (TA) that points from the past to the future, the apparent paradoxes appear to be an artefact of the wrong tacit assumption that the relativistic coordinate TA coincides with the physical TA. The latter should be identified with the thermodynamic TA, which, by being absolute and irrotational, does not lead to paradoxes.Comment: 7 pages, revised, new references, to appear in Found. Phys. Let

    Tachyonic Field Theory and Neutrino Mass Running

    Full text link
    In this paper three things are done. (i) We investigate the analogues of Cerenkov radiation for the decay of a superluminal neutrino and calculate the Cerenkov angles for the emission of a photon through a W loop, and for a collinear electron-positron pair, assuming the tachyonic dispersion relation for the superluminal neutrino. The decay rate of a freely propagating neutrino is found to depend on the shape of the assumed dispersion relation, and is found to decrease with decreasing tachyonic mass of the neutrino. (ii) We discuss a few properties of the tachyonic Dirac equation (symmetries and plane-wave solutions), which may be relevant for the description of superluminal neutrinos seen by the OPERA experiment, and discuss the calculation of the tachyonic propagator. (iii) In the absence of a commonly accepted tachyonic field theory, and in view of an apparent "running" of the observed neutrino mass with the energy, we write down a model Lagrangian, which describes a Yukawa-type interaction of a neutrino coupling to a scalar background field via a scalar-minus-pseudoscalar interaction. This constitutes an extension of the standard model. If the interaction is strong, then it leads to a substantial renormalization-group "running" of the neutrino mass and could potentially explain the experimental observations.Comment: 13 pages; RevTeX; to appear in Cent. Eur. J. Phy

    Quantum mechanics: Myths and facts

    Get PDF
    A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of "myths", that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.Comment: 51 pages, pedagogic review, revised, new references, to appear in Found. Phy

    Long-Term Follow-Up After Gene Therapy for Canavan Disease

    Get PDF
    Canavan disease is a hereditary leukodystrophy caused by mutations in the aspartoacylase gene (ASPA), leading to loss of enzyme activity and increased concentrations of the substrate N-acetylaspartate (NAA) in the brain. Accumulation of NAA results in spongiform degeneration of white matter and severe impairment of psychomotor development. The goal of this prospective cohort study was to assess long-term safety and preliminary efficacy measures after gene therapy with an adeno-associated viral vector carrying the ASPA gene (AAV2-ASPA). Using noninvasive magnetic resonance imaging and standardized clinical rating scales, we observed Canavan disease in 28 patients, with a subset of 13 patients being treated with AAV2-ASPA. Each patient received 9 × 1011 vector genomes via intraparenchymal delivery at six brain infusion sites. Safety data collected over a minimum 5-year follow-up period showed a lack of long-term adverse events related to the AAV2 vector. Posttreatment effects were analyzed using a generalized linear mixed model, which showed changes in predefined surrogate markers of disease progression and clinical assessment subscores. AAV2-ASPA gene therapy resulted in a decrease in elevated NAA in the brain and slowed progression of brain atrophy, with some improvement in seizure frequency and with stabilization of overall clinical status

    Classical Simulation of Relativistic Quantum Mechanics in Periodic Optical Structures

    Full text link
    Spatial and/or temporal propagation of light waves in periodic optical structures offers a rather unique possibility to realize in a purely classical setting the optical analogues of a wide variety of quantum phenomena rooted in relativistic wave equations. In this work a brief overview of a few optical analogues of relativistic quantum phenomena, based on either spatial light transport in engineered photonic lattices or on temporal pulse propagation in Bragg grating structures, is presented. Examples include spatial and temporal photonic analogues of the Zitterbewegung of a relativistic electron, Klein tunneling, vacuum decay and pair-production, the Dirac oscillator, the relativistic Kronig-Penney model, and optical realizations of non-Hermitian extensions of relativistic wave equations.Comment: review article (invited), 14 pages, 7 figures, 105 reference
    • …
    corecore