58 research outputs found

    Stilbenoids remodel the DNA methylation patterns in breast cancer cells and inhibit oncogenic NOTCH signaling through epigenetic regulation of MAML2 transcriptional activity

    Get PDF
    DNA hypomethylation was previously implicated in cancer progression and metastasis. The purpose of this study was to examine whether stilbenoids, resveratrol and pterostilbene thought to exert anticancer effects, target genes with oncogenic function for de novo methylation and silencing, leading to inactivation of related signaling pathways. Following Illumina 450K, genome-wide DNA methylation analysis reveals that stilbenoids alter DNA methylation patterns in breast cancer cells. On average, 75% of differentially methylated genes have increased methylation, and these genes are enriched for oncogenic functions, including NOTCH signaling pathway. MAML2, a coactivator of NOTCH targets, is methylated at the enhancer region and transcriptionally silenced in response to stilbenoids, possibly explaining the downregulation of NOTCH target genes. The increased DNA methylation at MAML2 enhancer coincides with increased occupancy of repressive histone marks and decrease in activating marks. This condensed chromatin structure is associated with binding of DNMT3B and decreased occupancy of OCT1 transcription factor at MAML2 enhancer, suggesting a role of DNMT3B in increasing methylation of MAML2 after stilbenoid treatment. Our results deliver a novel insight into epigenetic regulation of oncogenic signals in cancer and provide support for epigenetic-targeting strategies as an effective anticancer approach

    Analysis of neuropeptide gene expression by transfection of DNA into cell lines

    Full text link
    The transcriptional regulation of neuropeptide genes by cAMP is often directed by a cAMP responsive enhancer (CRE) upstream to the promoter of the genes. The identity of the CRE was determined by transient transfection experiments and has the consensus sequence of 5′-TGACGTCA-3′. A large family of transcription factors have been identified which recognize the CRE. Transient transfection assays that employed expression of these factors driven by viral promoters have determined they can transactivate the neuropeptide gene promoters. Because of the large number of factors that have been identified as being able to recognize the CRE, it has been difficult to determine which factors mediate in vivo the transactivation of a particular CRE. Using a dominant negative mutant of one of these factors, CREB, it has been determined that both CREB as well as other factors which do not interact with CREB may mediate the cAMP response of the somatostatin gene.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43232/1/11022_2005_Article_BF01667368.pd

    The hepatitis B virus X protein targets the basic region-leucine zipper domain of CREB.

    No full text
    corecore