161 research outputs found
On the detectability of non-trivial topologies
We explore the main physical processes which potentially affect the
topological signal in the Cosmic Microwave Background (CMB) for a range of
toroidal universes. We consider specifically reionisation, the integrated
Sachs-Wolfe (ISW) effect, the size of the causal horizon, topological defects
and primordial gravitational waves. We use three estimators: the information
content, the S/N statistic and the Bayesian evidence. While reionisation has
nearly no effect on the estimators, we show that taking into account the ISW
strongly decreases our ability to detect the topological signal. We also study
the impact of varying the relevant cosmological parameters within the 2 sigma
ranges allowed by present data. We find that only Omega_Lambda, which
influences both ISW and the size of the causal horizon, significantly alters
the detection for all three estimators considered here.Comment: 11 pages, 9 figure
What is the ability emotional intelligence test (MSCEIT) good for? An evaluation using item response theory.
The ability approach has been indicated as promising for advancing research in emotional intelligence (EI). However, there is scarcity of tests measuring EI as a form of intelligence. The Mayer Salovey Caruso Emotional Intelligence Test, or MSCEIT, is among the few available and the most widespread measure of EI as an ability. This implies that conclusions about the value of EI as a meaningful construct and about its utility in predicting various outcomes mainly rely on the properties of this test. We tested whether individuals who have the highest probability of choosing the most correct response on any item of the test are also those who have the strongest EI ability. Results showed that this is not the case for most items: The answer indicated by experts as the most correct in several cases was not associated with the highest ability; furthermore, items appeared too easy to challenge individuals high in EI. Overall results suggest that the MSCEIT is best suited to discriminate persons at the low end of the trait. Results are discussed in light of applied and theoretical considerations. © 2014 Fiori et al
Gravitational Lensing by Rotating Naked Singularities
We model massive compact objects in galactic nuclei as stationary,
axially-symmetric naked singularities in the Einstein-massless scalar field
theory and study the resulting gravitational lensing. In the weak deflection
limit we study analytically the position of the two weak field images, the
corresponding signed and absolute magnifications as well as the centroid up to
post-Newtonian order. We show that there are a static post-Newtonian
corrections to the signed magnification and their sum as well as to the
critical curves, which are function of the scalar charge. The shift of the
critical curves as a function of the lens angular momentum is found, and it is
shown that they decrease slightingly for the weakly naked and vastly for the
strongly naked singularities with the increase of the scalar charge. The
point-like caustics drift away from the optical axis and do not depend on the
scalar charge. In the strong deflection limit approximation we compute
numerically the position of the relativistic images and their separability for
weakly naked singularities. All of the lensing quantities are compared to
particular cases as Schwarzschild and Kerr black holes as well as
Janis--Newman--Winicour naked singularities.Comment: 35 pages, 30 figure
Spatially self-similar locally rotationally symmetric perfect fluid models
Einstein's field equations for spatially self-similar locally rotationally
symmetric perfect fluid models are investigated. The field equations are
rewritten as a first order system of autonomous ordinary differential
equations. Dimensionless variables are chosen in such a way that the number of
equations in the coupled system of differential equations is reduced as far as
possible. The system is subsequently analyzed qualitatively for some of the
models. The nature of the singularities occurring in the models is discussed.Comment: 27 pages, pictures available at
ftp://vanosf.physto.se/pub/figures/ssslrs.tar.g
Boson Stars as Gravitational Lenses
We discuss boson stars as possible gravitational lenses and study the lensing
effect by these objects made of scalar particles. The mass and the size of a
boson star may vary from an individual Newtonian object similar to the Sun to
the general relativistic size and mass of a galaxy close to its Schwarzschild
radius. We assume boson stars to be transparent which allows the light to pass
through them though the light is gravitationally deflected. We assume boson
stars of the mass to be on non-cosmological distance from
the observer. We discuss the lens equation for these stars as well as the
details of magnification. We find that there are typically three images of a
star but the deflection angles may vary from arcseconds to even degrees. There
is one tangential critical curve (Einstein ring) and one radial critical curve
for tangential and radial magnification, respectively. Moreover, the deflection
angles for the light passing in the gravitational field of boson stars can be
very large (even of the order of degrees) which reflects the fact they are very
strong relativistic objects. We also propose a suitable formula for the lens
equation for such large deflection angles, and with the reservation that large
deflection angle images are highly demagnified but in the area of the
tangential critical curve, their existence may help in observational detection
of suitable lenses possessing characteristic features of boson stars which
could also serve as a direct evidence for scalar fields in the universe.Comment: accepted by Astrophys. J., 31 pages, AASTeX, 6 figure
Light's Bending Angle due to Black Holes: From the Photon Sphere to Infinity
The bending angle of light is a central quantity in the theory of
gravitational lensing. We develop an analytical perturbation framework for
calculating the bending angle of light rays lensed by a Schwarzschild black
hole. Using a perturbation parameter given in terms of the gravitational radius
of the black hole and the light ray's impact parameter, we determine an
invariant series for the strong-deflection bending angle that extends beyond
the standard logarithmic deflection term used in the literature. In the
process, we discovered an improvement to the standard logarithmic deflection
term. Our perturbation framework is also used to derive as a consistency check,
the recently found weak deflection bending angle series. We also reformulate
the latter series in terms of a more natural invariant perturbation parameter,
one that smoothly transitions between the weak and strong deflection series. We
then compare our invariant strong deflection bending-angle series with the
numerically integrated exact formal bending angle expression, and find less
than 1% discrepancy for light rays as far out as twice the critical impact
parameter. The paper concludes by showing that the strong and weak deflection
bending angle series together provide an approximation that is within 1% of the
exact bending angle value for light rays traversing anywhere between the photon
sphere and infinity.Comment: 22 pages, 5 figure
Neutrino Spectra from Accretion Disks: Neutrino General Relativistic Effects and the Consequences for Nucleosynthesis
Black hole accretion disks have been proposed as good candidates for a range
of interesting nucleosynthesis, including the r-process. The presence of the
black hole influences the neutrino fluxes and affects the nucleosynthesis
resulting from the interaction of the emitted neutrinos and hot outflowing
material ejected from the disk. We study the impact of general relativistic
effects on the neutrinos emitted from black hole accretion disks. We present
abundances obtained by considering null geodesics and energy shifts for two
different disk models. We find that both the bending of the neutrino
trajectories and the energy shifts have important consequences for the
nucleosynthetic outcomeComment: 18 pages, 17 figures, submitted to Ap
Constraining topology in harmonic space
We consider several ways to test for topology directly in harmonic space by
comparing the measured a_lm with the expected correlation matrices. Two tests
are of a frequentist nature while we compute the Bayesian evidence as the third
test. Using correlation matrices for cubic and slab-space tori, we study how
these tests behave as a function of the minimal scale probed and as a function
of the size of the universe. We also apply them to different first-year WMAP
CMB maps and confirm that the universe is compatible with being infinitely big
for the cases considered. We argue that there is an information theoretical
limit (given by the Kullback-Leibler divergence) on the size of the topologies
that can be detected.Comment: 19 pages, 16 figures. Updated to match PRD versio
Measuring user influence, susceptibility and cynicalness in sentiment diffusion
National Research Foundation (NRF) Singapore under International Research Centre @ Singapore Funding Initiativ
Tidally-induced thermonuclear Supernovae
We discuss the results of 3D simulations of tidal disruptions of white dwarfs
by moderate-mass black holes as they may exist in the cores of globular
clusters or dwarf galaxies. Our simulations follow self-consistently the
hydrodynamic and nuclear evolution from the initial parabolic orbit over the
disruption to the build-up of an accretion disk around the black hole. For
strong enough encounters (pericentre distances smaller than about 1/3 of the
tidal radius) the tidal compression is reversed by a shock and finally results
in a thermonuclear explosion. These explosions are not restricted to progenitor
masses close to the Chandrasekhar limit, we find exploding examples throughout
the whole white dwarf mass range. There is, however, a restriction on the
masses of the involved black holes: black holes more massive than M swallow a typical 0.6 M dwarf before their tidal forces
can overwhelm the star's self-gravity. Therefore, this mechanism is
characteristic for black holes of moderate masses. The material that remains
bound to the black hole settles into an accretion disk and produces an X-ray
flare close to the Eddington limit of _\odot$), typically lasting for a few months. The combination
of a peculiar thermonuclear supernova together with an X-ray flare thus
whistle-blows the existence of such moderate-mass black holes. The next
generation of wide field space-based instruments should be able to detect such
events.Comment: 8 pages, 2 figures, EuroWD0
- âŠ