8 research outputs found

    Event-by-event correlations between Λ\Lambda (Λˉ\bar{\Lambda}) hyperon global polarization and handedness with charged hadron azimuthal separation in Au+Au collisions at sNN=27 GeV\sqrt{s_{\text{NN}}} = 27 \text{ GeV} from STAR

    Full text link
    Global polarizations (PP) of Λ\Lambda (Λˉ\bar{\Lambda}) hyperons have been observed in non-central heavy-ion collisions. The strong magnetic field primarily created by the spectator protons in such collisions would split the Λ\Lambda and Λˉ\bar{\Lambda} global polarizations (ΔP=PΛ−PΛˉ<0\Delta P = P_{\Lambda} - P_{\bar{\Lambda}} < 0). Additionally, quantum chromodynamics (QCD) predicts topological charge fluctuations in vacuum, resulting in a chirality imbalance or parity violation in a local domain. This would give rise to an imbalance (Δn=NL−NR⟨NL+NR⟩≠0\Delta n = \frac{N_{\text{L}} - N_{\text{R}}}{\langle N_{\text{L}} + N_{\text{R}} \rangle} \neq 0) between left- and right-handed Λ\Lambda (Λˉ\bar{\Lambda}) as well as a charge separation along the magnetic field, referred to as the chiral magnetic effect (CME). This charge separation can be characterized by the parity-even azimuthal correlator (Δγ\Delta\gamma) and parity-odd azimuthal harmonic observable (Δa1\Delta a_{1}). Measurements of ΔP\Delta P, Δγ\Delta\gamma, and Δa1\Delta a_{1} have not led to definitive conclusions concerning the CME or the magnetic field, and Δn\Delta n has not been measured previously. Correlations among these observables may reveal new insights. This paper reports measurements of correlation between Δn\Delta n and Δa1\Delta a_{1}, which is sensitive to chirality fluctuations, and correlation between ΔP\Delta P and Δγ\Delta\gamma sensitive to magnetic field in Au+Au collisions at 27 GeV. For both measurements, no correlations have been observed beyond statistical fluctuations.Comment: 10 pages, 10 figures; paper from the STAR Collaboratio

    Hyperon polarization along the beam direction relative to the second and third harmonic event planes in isobar collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Full text link
    The polarization of Λ\Lambda and Λˉ\bar{\Lambda} hyperons along the beam direction has been measured relative to the second and third harmonic event planes in isobar Ru+Ru and Zr+Zr collisions at sNN\sqrt{s_{NN}} = 200 GeV. This is the first experimental evidence of the hyperon polarization by the triangular flow originating from the initial density fluctuations. The amplitudes of the sine modulation for the second and third harmonic results are comparable in magnitude, increase from central to peripheral collisions, and show a mild pTp_T dependence. The azimuthal angle dependence of the polarization follows the vorticity pattern expected due to elliptic and triangular anisotropic flow, and qualitatively disagree with most hydrodynamic model calculations based on thermal vorticity and shear induced contributions. The model results based on one of existing implementations of the shear contribution lead to a correct azimuthal angle dependence, but predict centrality and pTp_T dependence that still disagree with experimental measurements. Thus, our results provide stringent constraints on the thermal vorticity and shear-induced contributions to hyperon polarization. Comparison to previous measurements at RHIC and the LHC for the second-order harmonic results shows little dependence on the collision system size and collision energy.Comment: 6 pages, 5 figures, Published in Physical Review Letter

    Search for the Chiral Magnetic Effect in Au+Au collisions at sNN=27\sqrt{s_{_{\rm{NN}}}}=27 GeV with the STAR forward Event Plane Detectors

    Full text link
    A decisive experimental test of the Chiral Magnetic Effect (CME) is considered one of the major scientific goals at the Relativistic Heavy-Ion Collider (RHIC) towards understanding the nontrivial topological fluctuations of the Quantum Chromodynamics vacuum. In heavy-ion collisions, the CME is expected to result in a charge separation phenomenon across the reaction plane, whose strength could be strongly energy dependent. The previous CME searches have been focused on top RHIC energy collisions. In this Letter, we present a low energy search for the CME in Au+Au collisions at sNN=27\sqrt{s_{_{\rm{NN}}}}=27 GeV. We measure elliptic flow scaled charge-dependent correlators relative to the event planes that are defined at both mid-rapidity ∣η∣<1.0|\eta|<1.0 and at forward rapidity 2.1<∣η∣<5.12.1 < |\eta|<5.1. We compare the results based on the directed flow plane (Ψ1\Psi_1) at forward rapidity and the elliptic flow plane (Ψ2\Psi_2) at both central and forward rapidity. The CME scenario is expected to result in a larger correlation relative to Ψ1\Psi_1 than to Ψ2\Psi_2, while a flow driven background scenario would lead to a consistent result for both event planes[1,2]. In 10-50\% centrality, results using three different event planes are found to be consistent within experimental uncertainties, suggesting a flow driven background scenario dominating the measurement. We obtain an upper limit on the deviation from a flow driven background scenario at the 95\% confidence level. This work opens up a possible road map towards future CME search with the high statistics data from the RHIC Beam Energy Scan Phase-II.Comment: main: 8 pages, 5 figures; supplementary material: 2 pages, 1 figur

    Measurement of electrons from open heavy-flavor hadron decays in Au+Au collisions at sNN=200\sqrt{s_{\rm NN}}=200 GeV with the STAR detector

    Full text link
    We report a new measurement of the production of electrons from open heavy-flavor hadron decays (HFEs) at mid-rapidity (∣y∣<|y|< 0.7) in Au+Au collisions at sNN=200\sqrt{s_{\rm NN}}=200 GeV. Invariant yields of HFEs are measured for the transverse momentum range of 3.5<pT<93.5 < p_{\rm T} < 9 GeV/cc in various configurations of the collision geometry. The HFE yields in head-on Au+Au collisions are suppressed by approximately a factor of 2 compared to that in pp+pp collisions scaled by the average number of binary collisions, indicating strong interactions between heavy quarks and the hot and dense medium created in heavy-ion collisions. Comparison of these results with models provides additional tests of theoretical calculations of heavy quark energy loss in the quark-gluon plasma

    Elliptic Flow of Heavy-Flavor Decay Electrons in Au+Au Collisions at sNN\sqrt{s_{_{\rm NN}}} = 27 and 54.4 GeV at RHIC

    Full text link
    We report on new measurements of elliptic flow (v2v_2) of electrons from heavy-flavor hadron decays at mid-rapidity (∣y∣<0.8|y|<0.8) in Au+Au collisions at sNN\sqrt{s_{_{\rm NN}}} = 27 and 54.4 GeV from the STAR experiment. Heavy-flavor decay electrons (eHFe^{\rm HF}) in Au+Au collisions at sNN\sqrt{s_{_{\rm NN}}} = 54.4 GeV exhibit a non-zero v2v_2 in the transverse momentum (pTp_{\rm T}) region of pT<p_{\rm T}< 2 GeV/cc with the magnitude comparable to that at sNN=200\sqrt{s_{_{\rm NN}}}=200 GeV. The measured eHFe^{\rm HF} v2v_2 at 54.4 GeV is also consistent with the expectation of their parent charm hadron v2v_2 following number-of-constituent-quark scaling as other light and strange flavor hadrons at this energy. These suggest that charm quarks gain significant collectivity through the evolution of the QCD medium and may reach local thermal equilibrium in Au+Au collisions at sNN=54.4\sqrt{s_{_{\rm NN}}}=54.4 GeV. The measured eHFe^{\rm HF} v2v_2 in Au+Au collisions at sNN=\sqrt{s_{_{\rm NN}}}= 27 GeV is consistent with zero within large uncertainties. The energy dependence of v2v_2 for different flavor particles (π,ϕ,D0/eHF\pi,\phi,D^{0}/e^{\rm HF}) shows an indication of quark mass hierarchy in reaching thermalization in high-energy nuclear collisions.Comment: 12 pages, 7 figures, 1 tabl

    Observation of the Electromagnetic Field Effect via Charge-Dependent Directed Flow in Heavy-Ion Collisions at the Relativistic Heavy Ion Collider

    No full text
    The deconfined quark-gluon plasma (QGP) created in relativistic heavy-ion collisions enables the exploration of the fundamental properties of matter under extreme conditions. Noncentral collisions can produce strong magnetic fields on the order of 10^{18}  G, which offers a probe into the electrical conductivity of the QGP. In particular, quarks and antiquarks carry opposite charges and receive contrary electromagnetic forces that alter their momenta. This phenomenon can be manifested in the collective motion of final-state particles, specifically in the rapidity-odd directed flow, denoted as v_{1}(y). Here, we present the charge-dependent measurements of dv_{1}/dy near midrapidities for π^{±}, K^{±}, and p(p[over ¯]) in Au+Au and isobar (_{44}^{96}Ru+_{44}^{96}Ru and _{40}^{96}Zr+_{40}^{96}Zr) collisions at sqrt[s_{NN}]=200  GeV, and in Au+Au collisions at 27 GeV, recorded by the STAR detector at the Relativistic Heavy Ion Collider. The combined dependence of the v_{1} signal on collision system, particle species, and collision centrality can be qualitatively and semiquantitatively understood as several effects on constituent quarks. While the results in central events can be explained by the u and d quarks transported from initial-state nuclei, those in peripheral events reveal the impacts of the electromagnetic field on the QGP. Our data put valuable constraints on the electrical conductivity of the QGP in theoretical calculations

    Search for the chiral magnetic wave using anisotropic flow of identified particles at energies available at the BNL Relativistic Heavy Ion Collider

    No full text
    The chiral magnetic wave (CMW) has been theorized to propagate in the deconfined nuclear medium formed in high-energy heavy-ion collisions and to cause a difference in elliptic flow (v2) between negatively and positively charged hadrons. Experimental data consistent with the CMW have been reported by the STAR Collaboration at the Relativistic Heavy Ion Collider (RHIC), based on the charge asymmetry dependence of the pion v2 from Au+Au collisions at sNN=27 to 200 GeV. In this comprehensive study, we present the STAR measurements of elliptic flow and triangular flow of charged pions, along with the v2 of charged kaons and protons, as a function of charge asymmetry in Au+Au collisions at sNN=27, 39, 62.4, and 200 GeV. The slope parameters extracted from the linear dependence of the v2 difference on charge asymmetry for different particle species are reported and compared in different centrality intervals. In addition, the slopes of v2 for charged pions in small systems, i.e., p+Au and d+Au at sNN=200 GeV, are also presented and compared with those in large systems, i.e., Au+Au at sNN=200 GeV and U+U at 193 GeV. Our results provide new insights for the possible existence of the CMW and further constrain the background contributions in heavy-ion collisions at RHIC energies.The chiral magnetic wave (CMW) has been theorized to propagate in the deconfined nuclear medium formed in high-energy heavy-ion collisions, and to cause a difference in elliptic flow (v2v_{2}) between negatively and positively charged hadrons. Experimental data consistent with the CMW have been reported by the STAR Collaboration at the Relativistic Heavy Ion Collider (RHIC), based on the charge asymmetry dependence of the pion v2v_{2} from Au+Au collisions at sNN\sqrt{s_{\rm NN}} = 27 to 200 GeV. In this comprehensive study, we present the STAR measurements of elliptic flow and triangular flow of charged pions, along with the v2v_{2} of charged kaons and protons, as a function of charge asymmetry in Au+Au collisions at sNN\sqrt{s_{\rm NN}} = 27, 39, 62.4 and 200 GeV. The slope parameters extracted from the linear dependence of the v2v_2 difference on charge asymmetry for different particle species are reported and compared in different centrality intervals. In addition, the slopes of v2v_{2} for charged pions in small systems, \textit{i.e.}, pp+Au and dd+Au at sNN\sqrt{s_{\rm NN}} = 200 GeV, are also presented and compared with those in large systems, \textit{i.e.}, Au+Au at sNN\sqrt{s_{\rm NN}} = 200 GeV and U+U at 193 GeV. Our results provide new insights for the possible existence of the CMW, and further constrain the background contributions in heavy-ion collisions at RHIC energies

    Search for the chiral magnetic effect in Au+Au collisions at sNN=27 GeV with the STAR forward event plane detectors

    No full text
    A decisive experimental test of the Chiral Magnetic Effect (CME) is considered one of the major scientific goals at the Relativistic Heavy-Ion Collider (RHIC) towards understanding the nontrivial topological fluctuations of the Quantum Chromodynamics vacuum. In heavy-ion collisions, the CME is expected to result in a charge separation phenomenon across the reaction plane, whose strength could be strongly energy dependent. The previous CME searches have been focused on top RHIC energy collisions. In this Letter, we present a low energy search for the CME in Au+Au collisions at sNN=27 GeV. We measure elliptic flow scaled charge-dependent correlators relative to the event planes that are defined at both mid-rapidity |η|<1.0 and at forward rapidity 2.1<|η|<5.1. We compare the results based on the directed flow plane (Ψ1) at forward rapidity and the elliptic flow plane (Ψ2) at both central and forward rapidity. The CME scenario is expected to result in a larger correlation relative to Ψ1 than to Ψ2, while a flow driven background scenario would lead to a consistent result for both event planes. In 10-50% centrality, results using three different event planes are found to be consistent within experimental uncertainties, suggesting a flow driven background scenario dominating the measurement. We obtain an upper limit on the deviation from a flow driven background scenario at the 95% confidence level. This work opens up a possible road map towards future CME search with the high statistics data from the RHIC Beam Energy Scan Phase-II
    corecore