202 research outputs found
Macroscopic Pure State of Light Free of Polarization Noise
The preparation of completely non-polarized light is seemingly easy: an
everyday example is sunlight. The task is much more difficult if light has to
be in a pure quantum state, as required by most quantum-technology
applications. The pure quantum states of light obtained so far are either
polarized or, in rare cases, manifest hidden polarization: even if their
intensities are invariant to polarization transformations, higher-order moments
are not. We experimentally demonstrate the preparation of the macroscopic
singlet Bell state, which is pure, completely non-polarized, and has no
polarization noise. Simultaneous fluctuation suppression in three Stokes
observables below the shot-noise limit is demonstrated, opening perspectives
for noiseless polarization measurements. The state is shown to be invariant to
polarization transformations. This robust highly entangled isotropic state
promises to fuel important applications in photonic quantum technologies.Comment: 4 pages, 2 figures, 1 tabl
Squeezed state purification with linear optics and feed forward
A scheme for optimal and deterministic linear optical purification of mixed
squeezed Gaussian states is proposed and experimentally demonstrated. The
scheme requires only linear optical elements and homodyne detectors, and allows
the balance between purification efficacy and squeezing degradation to be
controlled. One particular choice of parameters gave a ten-fold reduction of
the thermal noise with a corresponding squeezing degradation of only 11%. We
prove optimality of the protocol, and show that it can be used to enhance the
performance of quantum informational protocols such as dense coding and
entanglement generation.Comment: 4 pages, 3 figure
Quantum techniques using continuous variables of light
We present schemes for the generation and evaluation of continuous variable
entanglement of bright optical beams and give a brief overview of the variety
of optical techniques and quantum communication applications on this basis. A
new entanglement-based quantum interferometry scheme with bright beams is
suggested. The performance of the presented schemes is independent of the
relative interference phase which is advantageous for quantum communication
applications.Comment: 11 pages, 5 figures; minor correction, accepted versio
Reduction of Guided Acoustic Wave Brillouin Scattering in Photonic Crystal Fibers
Guided Acoustic Wave Brillouin Scattering (GAWBS) generates phase and
polarization noise of light propagating in glass fibers. This excess noise
affects the performance of various experiments operating at the quantum noise
limit. We experimentally demonstrate the reduction of GAWBS noise in a photonic
crystal fiber in a broad frequency range using cavity sound dynamics. We
compare the noise spectrum to the one of a standard fiber and observe a 10-fold
noise reduction in the frequency range up to 200 MHz. Based on our measurement
results as well as on numerical simulations we establish a model for the
reduction of GAWBS noise in photonic crystal fibers.Comment: 4 pages, 7 figures; added numerical simulations, added reference
Properties of bright squeezed vacuum at increasing brightness
A bright squeezed vacuum (BSV) is a nonclassical macroscopic state of light, which is generated through high-gain parametric down-conversion or four-wave mixing. Although the BSV is an important tool in quantum optics and has a lot of applications, its theoretical description is still not complete. In particular, the existing description in terms of Schmidt modes with gain-independent shapes fails to explain the spectral broadening observed in the experiment as the mean number of photons increases. Meanwhile, the semiclassical description accounting for the broadening does not allow us to decouple the intermodal photon-number correlations. In this work, we present a new generalized theoretical approach to describe the spatial properties of a multimode BSV. In the multimode case, one has to take into account the complicated interplay between all involved modes: each plane-wave mode interacts with all other modes, which complicates the problem significantly. The developed approach is based on exchanging the (k, t ) and (ω, z) representations and solving a system of integrodifferential equations. Our approach predicts correctly the dynamics of the Schmidt modes and the broadening of the angular distribution with the increase in the BSV mean photon number due to a stronger pumping. Moreover, the model correctly describes various properties of a widely used experimental configuration with two crystals and an air gap between them, namely, an SU(1,1) interferometer. In particular, it predicts the narrowing of the intensity distribution, the reduction and shift of the side lobes, and the decline in the interference visibility as the mean photon number increases due to stronger pumping. The presented experimental results confirm the validity of the new approach. The model can be easily extended to the case of the frequency spectrum, frequency Schmidt modes, and other experimental configurations
Projective filtering of a single spatial radiation eigenmode
Lossless filtering of a single coherent (Schmidt) mode from spatially
multimode radiation is a problem crucial for optics in general and for quantum
optics in particular. It becomes especially important in the case of
nonclassical light that is fragile to optical losses. An example is bright
squeezed vacuum generated via high-gain parametric down conversion or four-wave
mixing. Its highly multiphoton and multimode structure offers a huge increase
in the information capacity provided that each mode can be addressed
separately. However, the nonclassical signature of bright squeezed vacuum,
photon-number correlations, are highly susceptible to losses. Here we
demonstrate lossless filtering of a single spatial Schmidt mode by projecting
the spatial spectrum of bright squeezed vacuum on the eigenmode of a
single-mode fiber. Moreover, we show that the first Schmidt mode can be
captured by simply maximizing the fiber-coupled intensity. Importantly, the
projection operation does not affect the targeted mode and leaves it usable for
further applications.Comment: 10 pages, 9 figure
Photon correlations for colloidal nanocrystals and their clusters
Images of semiconductor `dot in rods' and their small clusters are studied by
measuring the second-order correlation function with a spatially resolving ICCD
camera. This measurement allows one to distinguish between a single dot and a
cluster and, to a certain extent, to estimate the number of dots in a cluster.
A more advanced measurement is proposed, based on higher-order correlations,
enabling more accurate determination of the number of dots in a small cluster.
Nonclassical features of the light emitted by such a cluster are analyzed.Comment: 4 pages, 4 figure
Sub shot noise phase quadrature measurement of intense light beams
We present a setup to perform sub shot noise measurements of the phase
quadrature for intense pulsed light without the use of a separate local
oscillator. A Mach--Zehnder interferometer with an unbalanced arm length is
used to detect the fluctuations of the phase quadrature at a single side band
frequency. Using this setup, the non--separability of a pair of quadrature
entangled beams is demonstrated experimentally.Comment: 9 pages, 2 figures, accepted for publication in Optics Letter
Demonstration of the spatial separation of the entangled quantum side-bands of an optical field
Quantum optics experiments on "bright" beams typically probe correlations
between side-band modes. However the extra degree of freedom represented by
this dual mode picture is generally ignored. We demonstrate the experimental
operation of a device which can be used to separate the quantum side-bands of
an optical field. We use this device to explicitly demonstrate the quantum
entanglement between the side-bands of a squeezed beam
- …