31 research outputs found

    Final Measurement of the U235 Antineutrino Energy Spectrum with the PROSPECT-I Detector at HFIR

    Full text link
    This Letter reports one of the most precise measurements to date of the antineutrino spectrum from a purely U235-fueled reactor, made with the final dataset from the PROSPECT-I detector at the High Flux Isotope Reactor. By extracting information from previously unused detector segments, this analysis effectively doubles the statistics of the previous PROSPECT measurement. The reconstructed energy spectrum is unfolded into antineutrino energy and compared with both the Huber-Mueller model and a spectrum from a commercial reactor burning multiple fuel isotopes. A local excess over the model is observed in the 5MeV to 7MeV energy region. Comparison of the PROSPECT results with those from commercial reactors provides new constraints on the origin of this excess, disfavoring at 2.2 and 3.2 standard deviations the hypotheses that antineutrinos from U235 are solely responsible and non-contributors to the excess observed at commercial reactors respectively.Comment: The paper has been updated with an improved parametrization of the observed antineutrino spectrum excess and extended discussion on its potential isotopic origi

    PROSPECT-II Physics Opportunities

    Full text link
    The Precision Reactor Oscillation and Spectrum Experiment, PROSPECT, has made world-leading measurements of reactor antineutrinos at short baselines. In its first phase, conducted at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, PROSPECT produced some of the strongest limits on eV-scale sterile neutrinos, made a precision measurement of the reactor antineutrino spectrum from 235^{235}U, and demonstrated the observation of reactor antineutrinos in an aboveground detector with good energy resolution and well-controlled backgrounds. The PROSPECT collaboration is now preparing an upgraded detector, PROSPECT-II, to probe yet unexplored parameter space for sterile neutrinos and contribute to a full resolution of the Reactor Antineutrino Anomaly, a longstanding puzzle in neutrino physics. By pressing forward on the world's most precise measurement of the 235^{235}U antineutrino spectrum and measuring the absolute flux of antineutrinos from 235^{235}U, PROSPECT-II will sharpen a tool with potential value for basic neutrino science, nuclear data validation, and nuclear security applications. Following a two-year deployment at HFIR, an additional PROSPECT-II deployment at a low enriched uranium reactor could make complementary measurements of the neutrino yield from other fission isotopes. PROSPECT-II provides a unique opportunity to continue the study of reactor antineutrinos at short baselines, taking advantage of demonstrated elements of the original PROSPECT design and close access to a highly enriched uranium reactor core

    Accessing new physics with an undoped, cryogenic CsI CEvNS detector for COHERENT at the SNS

    Full text link
    We consider the potential for a 10-kg undoped cryogenic CsI detector operating at the Spallation Neutron Source to measure coherent elastic neutrino-nucleus scattering and its sensitivity to discover new physics beyond the standard model. Through a combination of increased event rate, lower threshold, and good timing resolution, such a detector would significantly improve on past measurements. We considered tests of several beyond-the-standard-model scenarios such as neutrino non-standard interactions and accelerator-produced dark matter. This detector's performance was also studied for relevant questions in nuclear physics and neutrino astronomy, namely the weak charge distribution of CsI nuclei and detection of neutrinos from a core-collapse supernova

    Measurement of nat{}^{nat}Pb(νe\nu_e,Xnn) production with a stopped-pion neutrino source

    Full text link
    Using neutrinos produced at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL), the COHERENT collaboration has studied the Pb(νe\nu_e,Xnn) process with a lead neutrino-induced-neutron (NIN) detector. Data from this detector are fit jointly with previously collected COHERENT data on this process. A combined analysis of the two datasets yields a cross section that is 0.29−0.16+0.170.29^{+0.17}_{-0.16} times that predicted by the MARLEY event generator using experimentally-measured Gamow-Teller strength distributions, consistent with no NIN events at 1.8σ\sigma. This is the first inelastic neutrino-nucleus process COHERENT has studied, among several planned exploiting the high flux of low-energy neutrinos produced at the SNS.Comment: 11 pages, 9 figures, version accepted by Phys. Rev.
    corecore