65 research outputs found

    Diamond deposition on modified silicon substrates: Making diamond atomic force microscopy tips for nanofriction experiments

    Get PDF
    Fine-crystalline diamond particles are grown on standard Si atomic force microscopy tips, using hot filament-assisted chemical vapor deposition. To optimize the conditions for diamond deposition, first a series of experiments is carried out using silicon substrates covered by point-topped pyramids as obtained by wet chemical etching. The apexes and the edges of the silicon pyramids provide favorable sites for diamond nucleation and growth. The investigation of the deposited polycrystallites is done by means of optical microscopy, scanning electron microscopy and micro-Raman spectroscopy. The resulting diamond-terminated tips are tested in ultra high vacuum using contact-mode atomic force microscope on a stepped surface of sapphire showing high stability, sharpness, and hardnes

    Theoretical analysis of the formation of impurity precipitates in nanocavities I. Thermodynamic analysis

    No full text
    The formation of the impurity phase in materials containing nanopores is investigated theoretically. The formation of impurity clusters on the inner surface of pores is studied using the thermodynamic approach. The most advantageous states of metal impurities in silicon are determined, and comparison with available experimental data is carried out. The possibility of the formation of cobalt nanoclusters in subsurface cavities in copper is substantiated theoretically
    • …
    corecore