61 research outputs found

    Branch cuts of Stokes wave on deep water. Part I: Numerical solution and Pad\'e approximation

    Full text link
    Complex analytical structure of Stokes wave for two-dimensional potential flow of the ideal incompressible fluid with free surface and infinite depth is analyzed. Stokes wave is the fully nonlinear periodic gravity wave propagating with the constant velocity. Simulations with the quadruple and variable precisions are performed to find Stokes wave with high accuracy and study the Stokes wave approaching its limiting form with 2Ο€/32\pi/3 radians angle on the crest. A conformal map is used which maps a free fluid surface of Stokes wave into the real line with fluid domain mapped into the lower complex half-plane. The Stokes wave is fully characterized by the complex singularities in the upper complex half-plane. These singularities are addressed by rational (Pad\'e) interpolation of Stokes wave in the complex plane. Convergence of Pad\'e approximation to the density of complex poles with the increase of the numerical precision and subsequent increase of the number of approximating poles reveals that the only singularities of Stokes wave are branch points connected by branch cuts. The converging densities are the jumps across the branch cuts. There is one branch cut per horizontal spatial period Ξ»\lambda of Stokes wave. Each branch cut extends strictly vertically above the corresponding crest of Stokes wave up to complex infinity. The lower end of branch cut is the square-root branch point located at the distance vcv_c from the real line corresponding to the fluid surface in conformal variables. The limiting Stokes wave emerges as the singularity reaches the fluid surface. Tables of Pad\'e approximation for Stokes waves of different heights are provided. These tables allow to recover the Stokes wave with the relative accuracy of at least 10βˆ’2610^{-26}. The tables use from several poles to about hundred poles for highly nonlinear Stokes wave with vc/λ∼10βˆ’6.v_c/\lambda\sim 10^{-6}.Comment: 38 pages, 9 figures, 4 tables, supplementary material

    Direct Probing of Vibrational Interactions in UiO-66 Polycrystalline Membranes with Femtosecond Two-Dimensional Infrared Spectroscopy

    Get PDF
    [Image: see text] UiO-66 is a benchmark metal–organic framework that holds great promise for the design of new functional materials. In this work, we perform two-dimensional infrared measurements on polycrystalline membranes of UiO-66 grown on c-sapphire substrates. We study the symmetric and antisymmetric stretch vibrations of the carboxylate groups of the terephthalate linker ions and find that these vibrations show a rapid energy exchange and a collective vibrational relaxation with a time constant of 1.3 ps. We also find that the symmetric vibration of the carboxylate group is strongly coupled to a vibration of the aromatic ring of the terephthalate ion. We observe that the antisymmetric carboxylate vibrations of different terephthalate linkers show rapid resonant (FΓΆrster) energy transfer with a time constant of ∼1 ps

    Coexistence of Weak and Strong Wave Turbulence in a Swell Propagation

    Full text link
    By performing two parallel numerical experiments -- solving the dynamical Hamiltonian equations and solving the Hasselmann kinetic equation -- we examined the applicability of the theory of weak turbulence to the description of the time evolution of an ensemble of free surface waves (a swell) on deep water. We observed qualitative coincidence of the results. To achieve quantitative coincidence, we augmented the kinetic equation by an empirical dissipation term modelling the strongly nonlinear process of white-capping. Fitting the two experiments, we determined the dissipation function due to wave breaking and found that it depends very sharply on the parameter of nonlinearity (the surface steepness). The onset of white-capping can be compared to a second-order phase transition. This result corroborates with experimental observations by Banner, Babanin, Young.Comment: 5 pages, 5 figures, Submitted in Phys. Rev. Letter

    Π₯арактСристика эдильбаСвской ΠΏΠΎΡ€ΠΎΠ΄Ρ‹ ΠΎΠ²Π΅Ρ† РСспублики ΠšΠ°Π·Π°Ρ…ΡΡ‚Π°Π½

    Get PDF
    The article analyses material from sheep domestication to the present state. Data on the world’s leading countries, where sheep breeding is most intensively developed, are given. The largest sheep populations are concentrated in China, Australia, India and Sudan. There are 995 registered local sheep breeds, of which 100 are international cross-border sheep breeds. Many species are continually becoming extinct. Therefore, the problem of preserving the unique gene pool of aboriginal breeds is acute in many countries. More than 20 breeds of sheep are bred in Kazakhstan. Over the last ten years, the number of sheep in the Republic has been between 18.0-20.0 million. The most widespread sheep breeds are Edilbay, Kazakh Arkharmerinos and Kazakh Kurdish coarse-wool sheep. Sheep of the Edilbay breed are bred in 10 regions of Kazakhstan. Edilbay breed is adapted to breeding in areas of dry steppes, semi-desert and desert regions. The article gives a brief zootechnical characteristic of Edilbay sheep and describes the epizootic situation in the Republic of Kazakhstan. Particular attention is paid to changing the breeding strategy. In further breeding and pedigree work, the aim is to create a sheep population with reduced fat content. A plan has been outlined for comprehensive studies of the sheep gene pool and phenofund, including evaluating protein, carbohydrate, fat and mineral metabolism, chemical, physiological, cytogenetic, molecular-genetic, and other research methods. Water, soil, and feed will be monitored for heavy metals and macronutrients during the experimental work.ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΎΡ‚ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° одомашнивания ΠΎΠ²Π΅Ρ† Π΄ΠΎ соврСмСнного состояния овцСводства. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ Π²Π΅Π΄ΡƒΡ‰ΠΈΡ… странах ΠΌΠΈΡ€Π°, Π³Π΄Π΅ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ интСнсивно развиваСтся овцСводство. НаибольшСС поголовьС ΠΎΠ²Π΅Ρ† сосрСдоточСно Π² ΠšΠΈΡ‚Π°Π΅, Австралии, Индии ΠΈ Π‘ΡƒΠ΄Π°Π½Π΅. ЗарСгистрировано 995 мСстных ΠΏΠΎΡ€ΠΎΠ΄ ΠΎΠ²Π΅Ρ†, ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… 100 относятся ΠΊ ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½Ρ‹ΠΌ трансграничным. ΠŸΠΎΡΡ‚ΠΎΡΠ½Π½ΠΎ происходит исчСзновСниС ΠΌΠ½ΠΎΠ³ΠΈΡ… ΠΏΠΎΡ€ΠΎΠ΄. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… странах остро стоит ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° сохранСния ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π³Π΅Π½ΠΎΡ„ΠΎΠ½Π΄Π° Π°Π±ΠΎΡ€ΠΈΠ³Π΅Π½Π½Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄. Π’ ΠšΠ°Π·Π°Ρ…ΡΡ‚Π°Π½Π΅ разводят Π±ΠΎΠ»Π΅Π΅ 20 ΠΏΠΎΡ€ΠΎΠ΄ ΠΎΠ²Π΅Ρ†. Π—Π° послСдниС 10 Π»Π΅Ρ‚ Ρ‡ΠΈΡΠ»Π΅Π½Π½ΠΎΡΡ‚ΡŒ ΠΎΠ²Π΅Ρ† Π² рСспубликС Π½Π°Ρ…ΠΎΠ΄ΠΈΠ»Π°ΡΡŒ Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… 18,0–20,0 ΠΌΠ»Π½ Π³ΠΎΠ»ΠΎΠ². НаибольшСС распространСниС ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Ρ‚Π°ΠΊΠΈΠ΅ ΠΏΠΎΡ€ΠΎΠ΄Ρ‹ ΠΎΠ²Π΅Ρ†, ΠΊΠ°ΠΊ эдильбаСвская, казахский архаромСринос ΠΈ казахская ΠΊΡƒΡ€Π΄ΡŽΡ‡Π½Π°Ρ Π³Ρ€ΡƒΠ±ΠΎΡˆΠ΅Ρ€ΡΡ‚Π½Π°Ρ. ΠžΠ²Π΅Ρ† эдильбаСвской ΠΏΠΎΡ€ΠΎΠ΄Ρ‹ Π² РСспубликС ΠšΠ°Π·Π°Ρ…ΡΡ‚Π°Π½ разводят Π² 10 областях. ЭдильбаСвская ΠΏΠΎΡ€ΠΎΠ΄Π° приспособлСна ΠΊ Ρ€Π°Π·Π²Π΅Π΄Π΅Π½ΠΈΡŽ Π² Π·ΠΎΠ½Π°Ρ… сухих стСпСй, полупустынных ΠΈ пустынных Ρ€Π΅Π³ΠΈΠΎΠ½ΠΎΠ². Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Π΄Π°Π½Π° краткая зоотСхничСская характСристика ΡΠ΄ΠΈΠ»ΡŒΠ±Π°Π΅Π²ΡΠΊΠΈΡ… ΠΎΠ²Π΅Ρ†, описана эпизоотичСская обстановка Π² РСспубликС ΠšΠ°Π·Π°Ρ…ΡΡ‚Π°Π½. ОсобоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡƒΠ΄Π΅Π»Π΅Π½ΠΎ измСнСнию стратСгии сСлСкции. Π’ дальнСйшСй сСлСкционно-ΠΏΠ»Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ поставлСна Π·Π°Π΄Π°Ρ‡Π° создания популяции ΠΎΠ²Π΅Ρ† с ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½Π½Ρ‹ΠΌ содСрТаниСм ΠΆΠΈΡ€Π°. НамСчСн ΠΏΠ»Π°Π½ комплСксных исслСдований Π³Π΅Π½ΠΎΡ„ΠΎΠ½Π΄Π° ΠΈ Ρ„Π΅Π½ΠΎΡ„ΠΎΠ½Π΄Π° ΠΎΠ²Π΅Ρ†, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΠΉ ΠΎΡ†Π΅Π½ΠΊΡƒ Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ, ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ, ΠΆΠΈΡ€ΠΎΠ²ΠΎΠ³ΠΎ ΠΈ ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΠ±ΠΌΠ΅Π½ΠΎΠ², использованиС химичСских, физиологичСских, цитогСнСтичСских, молСкулярно-гСнСтичСских ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² исслСдований. Π’ΠΎ врСмя ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π½Π°ΠΌΠΈ Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³ Π²ΠΎΠ΄Ρ‹, ΠΏΠΎΡ‡Π²Ρ‹ ΠΈ ΠΊΠΎΡ€ΠΌΠΎΠ² Π½Π° содСрТаниС тяТСлых ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² ΠΈ макроэлСмСнтов

    Аккумуляция Ρ†ΠΈΠ½ΠΊΠ° ΠΈ ΠΌΠ΅Π΄ΠΈ Π² Ρ‡Π΅ΡˆΡƒΠ΅ судака Новосибирского Π²ΠΎΠ΄ΠΎΡ…Ρ€Π°Π½ΠΈΠ»ΠΈΡ‰Π°

    Get PDF
    One of the most important environmental issues is the pollution of water basins with chemicals, in particular with heavy metals, which do not dissolve in water, and pass through the food chain into the body of aquatic organisms, and then the final consumer, humans. The features of the content of copper and zinc, their variability in the scales of pike perch (Sander lucioperca) of the Novosibirsk reservoir were studied. 33 samples of scales were taken for analysis. The concentration of the studied metals was measured applying the atomic emission spectral method with inductively coupled plasma on an iCAP-6500 spectrometer from Thermo Scientific. A high phenotypic variability in the concentration of copper and zinc in pike perch scales was found. It was revealed that the concentration of copper in the scales of the pike perch of the Novosibirsk reservoir is 1.8 times lower than in the muscles, and the content of zinc is 4.8 times higher. The extreme ratio for copper was 1:24, for zinc 1:6. The content of zinc and copper was in a ratio of 48:1. The average population values of the concentration level of copper (1.69 mg / kg) and zinc (93.3 mg / kg) in the scales of the pike perch of the Novosibirsk reservoir were established. A high level of positive correlation (r = 0.859) was revealed between essential elements. The obtained data on the level of copper and zinc concentration in scales can be used as reference values. The distribution of heavy metals in zander scales is uneven. Expansion of parameters for assessing living organisms by chemical composition enables to assess more accurately the interior of animals. The data obtained can be used for intravital assessment of the interior of zander and in environmental studies. There is a tendency towards an increase in the level of heavy metals in the water body of the Novosibirsk Reservoir.Одна ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²Π°ΠΆΠ½Ρ‹Ρ… соврСмСнных ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ экологии – загрязнСниС Π²ΠΎΠ΄ΠΎΠ΅ΠΌΠΎΠ² химичСскими соСдинСниями, Π² частности тяТСлыми ΠΌΠ΅Ρ‚Π°Π»Π»Π°ΠΌΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ Ρ€Π°ΡΡ‚Π²ΠΎΡ€ΡΡŽΡ‚ΡΡ Π² Π²ΠΎΠ΄Π΅ ΠΈ ΠΏΠΎ Ρ†Π΅ΠΏΠΈ питания пСрСходят Π² ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌ Π³ΠΈΠ΄Ρ€ΠΎΠ±ΠΈΠΎΠ½Ρ‚ΠΎΠ², Π° Π·Π°Ρ‚Π΅ΠΌ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠ³ΠΎ потрСбитСля – Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. Π˜Π·ΡƒΡ‡Π΅Π½Ρ‹ особСнности содСрТания ΠΌΠ΅Π΄ΠΈ ΠΈ Ρ†ΠΈΠ½ΠΊΠ°, ΠΈΡ… ΠΈΠ·ΠΌΠ΅Π½Ρ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ Π² Ρ‡Π΅ΡˆΡƒΠ΅ судака (Sander lucioperca) Новосибирского Π²ΠΎΠ΄ΠΎΡ…Ρ€Π°Π½ΠΈΠ»ΠΈΡ‰Π°. Для Π°Π½Π°Π»ΠΈΠ·Π° Π±Ρ‹Π»ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°Π½ΠΎ 33 ΠΏΡ€ΠΎΠ±Ρ‹ Ρ‡Π΅ΡˆΡƒΠΈ. ΠšΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ исслСдуСмых ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² Π±Ρ‹Π»Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π°Ρ‚ΠΎΠΌΠ½ΠΎ-эмиссионного ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° с ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎ-связанной ΠΏΠ»Π°Π·ΠΌΠΎΠΉ Π½Π° спСктромСрС iCAP-6500 Ρ„ΠΈΡ€ΠΌΡ‹ Thermo Scientific. УстановлСна высокая фСнотипичСская ΠΈΠ·ΠΌΠ΅Π½Ρ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΌΠ΅Π΄ΠΈ ΠΈ Ρ†ΠΈΠ½ΠΊΠ° Π² Ρ‡Π΅ΡˆΡƒΠ΅ судака. ВыявлСно, Ρ‡Ρ‚ΠΎ Π² Ρ‡Π΅ΡˆΡƒΠ΅ судака Новосибирского Π²ΠΎΠ΄ΠΎΡ…Ρ€Π°Π½ΠΈΠ»ΠΈΡ‰Π° концСнтрация ΠΌΠ΅Π΄ΠΈ Π½ΠΈΠΆΠ΅, Ρ‡Π΅ΠΌ Π² ΠΌΡ‹ΡˆΡ†Π°Ρ…, Π² 1,8 Ρ€Π°Π·Π°, Π° содСрТаниС Ρ†ΠΈΠ½ΠΊΠ° большС Π² 4,8 Ρ€Π°Π·Π°. ΠžΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΊΡ€Π°ΠΉΠ½ΠΈΡ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ для ΠΌΠ΅Π΄ΠΈ составило 1 : 24, для Ρ†ΠΈΠ½ΠΊΠ° 1 : 6. Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ Ρ†ΠΈΠ½ΠΊΠ° ΠΈ ΠΌΠ΅Π΄ΠΈ Π½Π°Ρ…ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ Π² ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ 48 : 1. УстановлСны срСдниС популяционныС значСния уровня ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΌΠ΅Π΄ΠΈ (1,69 ΠΌΠ³/ΠΊΠ³) ΠΈ Ρ†ΠΈΠ½ΠΊΠ° (93,3 ΠΌΠ³/ΠΊΠ³) Π² Ρ‡Π΅ΡˆΡƒΠ΅ судака Новосибирского Π²ΠΎΠ΄ΠΎΡ…Ρ€Π°Π½ΠΈΠ»ΠΈΡ‰Π°. ВыявлСн высокий ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ ΠΏΠΎΠ»oΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ коррСляции (r = 0,859) ΠΌΠ΅ΠΆΠ΄Ρƒ ΡΡΡΠ΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ элСмСнтами. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ уровня ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΌΠ΅Π΄ΠΈ ΠΈ Ρ†ΠΈΠ½ΠΊΠ° Π² Ρ‡Π΅ΡˆΡƒΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π² качСствС рСфСрСнсных Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ. РаспрСдСлСниС тяТСлых ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² Π² Ρ‡Π΅ΡˆΡƒΠ΅ судака характСризуСтся Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒΡŽ. Π Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΆΠΈΠ²Ρ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΏΠΎ химичСскому составу Π΄Π°Π΅Ρ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΡ‡Π½ΠΎ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΈΠ½Ρ‚Π΅Ρ€ΡŒΠ΅Ρ€ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для ΠΏΡ€ΠΈΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎΠΉ ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΈΠ½Ρ‚Π΅Ρ€ΡŒΠ΅Ρ€Π° судака ΠΈ Π² экологичСских исслСдованиях. ΠžΡ‚ΠΌΠ΅Ρ‡Π°Π΅Ρ‚ΡΡ тСндСнция ΠΊ Π²ΠΎΠ·Ρ€Π°ΡΡ‚Π°Π½ΠΈΡŽ уровня тяТСлых ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² Π² Π²ΠΎΠ΄ΠΎΠ΅ΠΌΠ΅ Новосибирского Π²ΠΎΠ΄ΠΎΡ…Ρ€Π°Π½ΠΈΠ»ΠΈΡ‰Π°

    Бвязь Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² нСйропсихологичСского тСстирования ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ Ρ€Π΅Π³ΠΈΠΎΠ½Π°Ρ€Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΡ€ΠΎΠ²ΠΎΡ‚ΠΎΠΊΠ° ΠΏΠΎ Π΄Π°Π½Π½Ρ‹ΠΌ ОЀЭКВ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² кардиохирургичСского профиля

    Get PDF
    The article provides new data on the association between changes in regional cerebral blood flow during SPECT and cognitive impairment in patients who underwent coronary artery bypass grafting and combined carotid endarterectomy and coronary artery bypass grafting with cardiopulmonary bypass. The possibilities of using SPECT as a diagnostic tool in localization of areas with a similar association, in assessing the dynamics in brain perfusion and cognitive functions in the pre- and postoperative period are shown.Aim. To determine the presence of an association between the indicators of regional cerebral blood flow according to single-photon emission computed tomography (SPECT) data and the data of neuropsychological testing in cardiac surgery patients.Methods. We studied the parameters of regional cerebral blood flow (rCBF) and the data of neuropsychological testing in 34 cardiac surgical patients who underwent coronary artery bypass grafting (CABG, n = 13) and combined carotid endarterectomy and CABG (n = 21). The state of the brain was assessed by SPECT using a radiopharmaceutical 99mTc-HMPAO (Ceretek). Assessment of cognitive functions before surgery, 2–3 days before, and in the early postoperative period, on days 5–7, was carried out using a hardware-software complex Status-PF.Results. A statistically significant relationship was found between the indices of rCBF according to neuropsychological testing data in the pre- and postoperative period. We noted a moderate correlation with the Beck Depression Scale indicators in the 1st (p = 0.010943) and 2nd (p = 0.000604) groups before surgery. There was a high correlation with visual-motor response time (VMR) before (p = 0.003878) and after the procedure (p = 0.001251), a moderate correlation with the number of errors (VMR) before the procedure (p = 0.042911) and a high correlation after the procedure (p = 0.003521) in the 1st group; in the 2nd group, there was a moderate correlation before (p = 0.004625) and after the procedure (p = 0 .005689). A moderate correlation with the indicators of attention after the procedure (p = 0.049611) was noted in the 1st group, in the 2nd group, we noted a moderate correlation before (p = 0.021969) and after the procedure (p = 0.008905). In the 2nd group there was a moderate correlation with the number of processed symbols (the Bourdon test) during the 1st minute before the procedure (p = 0.016491), a high correlation after the procedure (p = 0.007920), and a high correlation with the number of processed symbols during the 4th minute before the procedure (p = 0.001473). There was a moderate correlation with a total with number of processed symbols in the 2nd group before (p = 0.029073) and after the procedure (p = 0.024164), and a high correlation with the number of errors made after the procedure in the 1st (p = 0.006367) and 2nd (p = 0.013780) groups. A high correlation with indicators of attention after surgery (p = 0.000153) was noted as well.Β Conclusion. The indicators of regional cerebral blood flow obtained by SPECT in patients undergoing isolated CABG and combined CAE and CABG were associated with the data of neuropsychological testing and reflect changes in the cognitive status of patients.Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π½ΠΎΠ²Ρ‹Π΅ свСдСния ΠΎ связи ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Ρ€Π΅Π³ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΡ€ΠΎΠ²ΠΎΡ‚ΠΎΠΊΠ° ΠΏΡ€ΠΈ ОЀЭКВ ΠΈ ΠΊΠΎΠ³Π½ΠΈΡ‚ΠΈΠ²Π½Ρ‹Ρ… Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² кардиохирургичСского профиля, ΠΏΠΎΠ΄Π²Π΅Ρ€Π³ΡˆΠΈΡ…ΡΡ ΠΊΠΎΡ€ΠΎΠ½Π°Ρ€Π½ΠΎΠΌΡƒ ΡˆΡƒΠ½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ ΠΈ сочСтанному Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Ρƒ Π½Π° ΠΊΠΎΡ€ΠΎΠ½Π°Ρ€Π½Ρ‹Ρ… ΠΈ ΠΊΠ°Ρ€ΠΎΡ‚ΠΈΠ΄Π½Ρ‹Ρ… артСриях Π² условиях искусствСнного кровообращСния. ΠŸΠΎΠΊΠ°Π·Π°Π½Ρ‹ возмоТности ОЀЭКВ ΠΊΠ°ΠΊ диагностичСского инструмСнта Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ областСй с ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΉ связью, Π² ΠΎΡ†Π΅Π½ΠΊΠ΅ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ ΠΏΠ΅Ρ€Ρ„ΡƒΠ·ΠΈΠΈ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° ΠΈ ΠΊΠΎΠ³Π½ΠΈΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π² Π΄ΠΎ- ΠΈ послСопСрационном ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅.ЦСль. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ связи ΠΌΠ΅ΠΆΠ΄Ρƒ показатСлями Ρ€Π΅Π³ΠΈΠΎΠ½Π°Ρ€Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΡ€ΠΎΠ²ΠΎΡ‚ΠΎΠΊΠ° (Ρ€ΠœΠš) ΠΏΠΎ Π΄Π°Π½Π½Ρ‹ΠΌ ΠΎΠ΄Π½ΠΎΡ„ΠΎΡ‚ΠΎΠ½Π½ΠΎΠΉ эмиссионной ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ (ОЀЭКВ) ΠΈ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ нСйропсихологичСского тСстирования Ρƒ кардиохирургичСских ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ².Β ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π˜Π·ΡƒΡ‡Π΅Π½Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ Ρ€ΠœΠš ΠΈ Π΄Π°Π½Π½Ρ‹Π΅ нСйропсихологичСского тСстирования 34 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² кардиохирургичСского профиля, ΠΏΠΎΠ΄Π²Π΅Ρ€Π³ΡˆΠΈΡ…ΡΡ ΠΊΠΎΡ€ΠΎΠ½Π°Ρ€Π½ΠΎΠΌΡƒ ΡˆΡƒΠ½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ (n = 13) ΠΈ сочСтанному Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Ρƒ Π½Π° ΠΊΠΎΡ€ΠΎΠ½Π°Ρ€Π½Ρ‹Ρ… ΠΈ ΠΊΠ°Ρ€ΠΎΡ‚ΠΈΠ΄Π½Ρ‹Ρ… артСриях (n = 21). БостояниС Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° ΠΎΡ†Π΅Π½Π΅Π½ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ОЀЭКВ с Ρ€Π°Π΄ΠΈΠΎΡ„Π°Ρ€ΠΌΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠΌ 99mTc-HMPAO (Ceretec, GE Healthcare, ВСликобритания). ΠžΡ†Π΅Π½ΠΊΠ° ΠΊΠΎΠ³Π½ΠΈΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π΄ΠΎ хирургичСского Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°, Π·Π° 2–3 дня, ΠΈ Π² Ρ€Π°Π½Π½Π΅ΠΌ послСопСрационном ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅, Π½Π° 5–7-ΠΉ дСнь, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° Π½Π° ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎ-Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π½ΠΎΠΌ комплСксС Status-PF.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ВыявлСна статистичСская связь ΠΌΠ΅ΠΆΠ΄Ρƒ показатСлями Ρ€ΠœΠš ΠΈ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ нСйропсихологичСского тСстирования Π² Π΄ΠΎ- ΠΈ послСопСрационном ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅. ЗарСгистрирована замСтная связь с показатСлями ΡˆΠΊΠ°Π»Ρ‹ дСпрСссии Π‘Π΅ΠΊΠ° Π² 1-ΠΉ (p = 0,010943) ΠΈ 2-ΠΉ (p = 0,000604) Π³Ρ€ΡƒΠΏΠΏΠ°Ρ… Π΄ΠΎ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ. Π’ 1-ΠΉ Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° высокая связь со Π²Ρ€Π΅ΠΌΠ΅Π½Π΅ΠΌ слоТной Π·Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ-ΠΌΠΎΡ‚ΠΎΡ€Π½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ (Π‘Π—ΠœΠ ) Π΄ΠΎ (p = 0,003878) ΠΈ послС (p = 0,001251) ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ, замСтная связь с количСством ошибок (Π‘Π—ΠœΠ ) Π΄ΠΎ (p = 0,042911) ΠΈ высокая связь послС (p = 0,003521) ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ; Π²ΠΎ 2-ΠΉ Π³Ρ€ΡƒΠΏΠΏΠ΅ замСтная связь Π΄ΠΎ (p = 0,004625) ΠΈ послС (p = 0,005689) Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°. Π’ 1-ΠΉ Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Π° замСтная связь с объСмом внимания послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ (p = 0,049611), Π²ΠΎ 2-ΠΉ Π³Ρ€ΡƒΠΏΠΏΠ΅ замСтная связь Π΄ΠΎ (p = 0,021969) ΠΈ послС (p = 0,008905) Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°. ВыявлСна связь с количСством ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Ρ… Π·Π½Π°ΠΊΠΎΠ² ΠΏΡ€ΠΎΠ±Ρ‹ Π‘ΡƒΡ€Π΄ΠΎΠ½Π°: Π½Π° 1-ΠΉ ΠΌΠΈΠ½ΡƒΡ‚Π΅ Π²ΠΎ 2-ΠΉ Π³Ρ€ΡƒΠΏΠΏΠ΅ замСтная связь Π΄ΠΎ (p = 0,016491) ΠΈ высокая послС (p = 0,007920) ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ, Π½Π° 4-ΠΉ ΠΌΠΈΠ½ΡƒΡ‚Π΅ Π²ΠΎ 2-ΠΉ Π³Ρ€ΡƒΠΏΠΏΠ΅ высокая связь Π΄ΠΎ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ (p = 0,001473); с ΠΎΠ±Ρ‰ΠΈΠΌ количСством ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Ρ… Π·Π½Π°ΠΊΠΎΠ²: Π²ΠΎ 2-ΠΉ Π³Ρ€ΡƒΠΏΠΏΠ΅ замСтная связь Π΄ΠΎ (p = 0,029073) ΠΈ послС (p = 0,024164) ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ; с количСством ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½Ρ‹Ρ… ошибок высокая связь послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Π² 1-ΠΉ (p = 0,006367) ΠΈ 2-ΠΉ (p = 0,013780) Π³Ρ€ΡƒΠΏΠΏΠ°Ρ…; ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Π° высокая связь с коэффициСнтом внимания послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ (p = 0,000153).Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ Ρ€Π΅Π³ΠΈΠΎΠ½Π°Ρ€Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΡ€ΠΎΠ²ΠΎΡ‚ΠΎΠΊΠ°, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ОЀЭКВ, Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΏΠ΅Ρ€Π΅Π½Π΅ΡΡˆΠΈΡ… ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅ ΠΊΠΎΡ€ΠΎΠ½Π°Ρ€Π½ΠΎΠ΅ ΡˆΡƒΠ½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΡΠΈΠΌΡƒΠ»ΡŒΡ‚Π°Π½Π½Ρ‹Π΅ Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Π½Π° ΠΊΠ°Ρ€ΠΎΡ‚ΠΈΠ΄Π½Ρ‹Ρ… ΠΈ ΠΊΠΎΡ€ΠΎΠ½Π°Ρ€Π½Ρ‹Ρ… артСриях, ΠΊΠΎΡ€Ρ€Π΅Π»ΠΈΡ€ΡƒΡŽΡ‚ с Π΄Π°Π½Π½Ρ‹ΠΌΠΈ нСйропсихологичСского тСстирования ΠΈ ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‚ измСнСния ΠΊΠΎΠ³Π½ΠΈΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ статуса Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ…

    Аккумуляция ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π° Ρƒ самок ΠΈ самцов Π² ΠΌΡ‹ΡˆΠ΅Ρ‡Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ ΠΈ Ρ‡Π΅ΡˆΡƒΠ΅ судака ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½ΠΎΠ³ΠΎ (Sander lucioperca) Новосибирского Π²ΠΎΠ΄ΠΎΡ…Ρ€Π°Π½ΠΈΠ»ΠΈΡ‰Π°

    Get PDF
    Studies on the accumulation of manganese in females and males in the scales and muscle tissue of the Sander lucioperca of the Novosibirsk Reservoir were carried out. Analyzes were taken in a A.M. Nikolaev analytical laboratory of the Institute of Inorganic Chemistry SB RAS. The pike perch were divided by gender. Then 34 samples of scales and muscle tissue were taken from them. The manganese content was determined by inductively coupled plasma atomic emission spectrometry on a Thermo Scientific iCAP-6500 spectrometer. High variability of manganese accumulation in females and males in scales and muscle tissue was revealed. It was found that the concentration of manganese in females scales was 7.7 times higher than in muscle tissue, and in males - 15.7 times. There were no significant differences in manganese content between the genders. The ratio of extreme variants of scales in females and males was 1: 5 and 1: 6, and in muscle tissue - 1: 35 and 1: 30, respectively. The average values of the concentration of manganese in the muscles of the Sander lucioperca of the Novosibirsk reservoir were determined. Differences in the deposition of manganese in muscle tissue in females and males of Sander lucioperca were revealed. The concentration of manganese in the muscles of females was 2 times higher than that of males. The results obtained on the accumulation of manganese in scales and muscle tissue can be used as reference values. The level of metal concentration is characterized by an uneven distribution in the muscles and scales of Sander lucioperca. The research results are suitable for a lifetime assessment of the Sander lucioperca interior. An average positive correlation was found between manganese in females with absolute length and body weight (r = 0.329 and r = 0.311). It was found that the amount of manganese and other heavy metals in the Novosibirsk reservoir is increasing.Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ исслСдования ΠΏΠΎ аккумуляции ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π° Π² Ρ‡Π΅ΡˆΡƒΠ΅ ΠΈ ΠΌΡ‹ΡˆΠ΅Ρ‡Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ Ρƒ самок ΠΈ самцов судака ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½ΠΎΠ³ΠΎ (Sander lucioperca) Новосибирского Π²ΠΎΠ΄ΠΎΡ…Ρ€Π°Π½ΠΈΠ»ΠΈΡ‰Π°. Анализы ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ Π½Π° Π±Π°Π·Π΅ сСртифицированной аналитичСской Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΈ Π˜Π½ΡΡ‚ΠΈΡ‚ΡƒΡ‚Π° нСорганичСской Ρ…ΠΈΠΌΠΈΠΈ ΠΈΠΌ. А. М. НиколаСва БО РАН. Π‘ΡƒΠ΄Π°ΠΊΠΈ Π±Ρ‹Π»ΠΈ Ρ€Π°Π·Π΄Π΅Π»Π΅Π½Ρ‹ ΠΏΠΎ ΠΏΠΎΠ»Ρƒ, Π° Π·Π°Ρ‚Π΅ΠΌ ΠΎΡ‚ Π½ΠΈΡ… ΠΎΡ‚ΠΎΠ±Ρ€Π°Π»ΠΈ ΠΏΠΎ 34 ΠΏΡ€ΠΎΠ±Ρ‹ Ρ‡Π΅ΡˆΡƒΠΈ ΠΈ ΠΌΡ‹ΡˆΠ΅Ρ‡Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ. Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π° опрСдСляли ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π°Ρ‚ΠΎΠΌΠ½ΠΎ-эмиссионной спСктромСтрии с ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎ-связанной ΠΏΠ»Π°Π·ΠΌΠΎΠΉ Π½Π° спСктромСтрС iCAP-6500 Ρ„ΠΈΡ€ΠΌΡ‹ Thermo Scientific. ВыявлСна высокая ΠΈΠ·ΠΌΠ΅Π½Ρ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ накоплСния ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π° Ρƒ самок ΠΈ самцов Π² Ρ‡Π΅ΡˆΡƒΠ΅ ΠΈ ΠΌΡ‹ΡˆΠ΅Ρ‡Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ. УстановлСно, Ρ‡Ρ‚ΠΎ концСнтрация ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π° Ρƒ самок Π² Ρ‡Π΅ΡˆΡƒΠ΅ Π±Ρ‹Π»Π° Π²Ρ‹ΡˆΠ΅ Π² 7,7 Ρ€Π°Π·Π°, Ρ‡Π΅ΠΌ Π² ΠΌΡ‹ΡˆΠ΅Ρ‡Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ, Π° Ρƒ самцов – Π² 15,7. ДостовСрных ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠΉ ΠΏΠΎ ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡŽ ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π° ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠΎΠ»Π°ΠΌΠΈ Π½Π΅ выявлСно. ΠžΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΊΡ€Π°ΠΉΠ½ΠΈΡ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ Π² Ρ‡Π΅ΡˆΡƒΠ΅ Ρƒ самок ΠΈ самцов Π±Ρ‹Π»ΠΎ 1 : 5 ΠΈ 1 : 6, Π° Π² ΠΌΡ‹ΡˆΠ΅Ρ‡Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ – 1 : 35 ΠΈ 1 : 30 соотвСтствСнно. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ срСдниС значСния ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π° Π² ΠΌΡ‹ΡˆΡ†Π°Ρ… Ρƒ судака Новосибирского Π²ΠΎΠ΄ΠΎΡ…Ρ€Π°Π½ΠΈΠ»ΠΈΡ‰Π°. ВыявлСны различия ΠΏΠΎ Π΄Π΅ΠΏΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π° Π² ΠΌΡ‹ΡˆΠ΅Ρ‡Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ Ρƒ самок ΠΈ самцов судака. ΠšΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π° Π² ΠΌΡ‹ΡˆΡ†Π°Ρ… Ρƒ самок Π±Ρ‹Π»Π° Π² 2 Ρ€Π°Π·Π° Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ Ρƒ самцов. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎ аккумуляции ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π° Π² Ρ‡Π΅ΡˆΡƒΠ΅ ΠΈ ΠΌΡ‹ΡˆΠ΅Ρ‡Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ Π² качСствС рСфСрСнсных Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ. Π£Ρ€ΠΎΠ²Π΅Π½ΡŒ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΌΠ΅Ρ‚Π°Π»Π»Π° характСризуСтся Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΌ распрСдСлСниСм Π² ΠΌΡ‹ΡˆΡ†Π°Ρ… ΠΈ Ρ‡Π΅ΡˆΡƒΠ΅ судака. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдований подходят для ΠΏΡ€ΠΈΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎΠΉ ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΈΠ½Ρ‚Π΅Ρ€ΡŒΠ΅Ρ€Π° Sander lucioperca. ВыявлСна срСдняя ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ коррСляция ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅ΠΌ Ρƒ самок с Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠΉ Π΄Π»ΠΈΠ½ΠΎΠΉ ΠΈ ΠΆΠΈΠ²ΠΎΠΉ массой (r = 0,329 ΠΈ r = 0,311). УстановлСно, Ρ‡Ρ‚ΠΎ количСство ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π΄Ρ€ΡƒΠ³ΠΈΡ… тяТСлых ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² Π² Π²ΠΎΠ΄ΠΎΠ΅ΠΌΠ΅ Новосибирского Π²ΠΎΠ΄ΠΎΡ…Ρ€Π°Π½ΠΈΠ»ΠΈΡ‰Π° увСличиваСтся
    • …
    corecore