5,874 research outputs found

    Cold Collision Frequency Shift in Two-Dimensional Atomic Hydrogen

    Full text link
    We report a measurement of the cold collision frequency shift in atomic hydrogen gas adsorbed on the surface of superfluid 4He at T<=90 mK. Using two-photon electron and nuclear magnetic resonance in 4.6 T field we separate the resonance line shifts due to the dipolar and exchange interactions, both proportional to surface density sigma. We find the clock shift Delta v_c = -1.0(1)x10^-7 Hz cm^-2 x sigma, which is about 100 times smaller than the value predicted by the mean field theory and known scattering lengths in the 3D case.Comment: 4 pages, 3 figure

    Unconventional superfluidity of fermions in Bose-Fermi mixtures

    Full text link
    We examine two dimensional mixture of single-component fermions and dipolar bosons. We calculate the self-enregies of the fermions in the normal state and the Cooper pair channel by including first order vertex correction to derive a modified Eliashberg equation. We predict appearance of superfluids with various non-standard pairing symmetries at experimentally feasible transition temperatures within the strong-coupling limit of the Eliashberg equation. Excitations in these superfluids are anyonic and follow non-Abelian statistics

    The transverse breathing mode of an elongated Bose-Einstein condensate

    Full text link
    We study experimentally the transverse monopole mode of an elongated rubidium condensate. Due to the scaling invariance of the non-linear Schr\"odinger (Gross-Pitaevski) equation, the oscillation is monochromatic and sinusoidal at short times, even under strong excitation. For ultra-low temperatures, the quality factor Q=ω0/γ0Q=\omega_0/\gamma_0 can exceed 2000, where ω0\omega_0 and γ0\gamma_0 are the mode angular frequency and damping rate. This value is much larger than any previously reported for other eigenmodes of a condensate. We also present the temperature variation of ω0\omega_0 and γ0\gamma_0.Comment: 4 pages, 4 figures, submitted to PR

    Decoherence due to three-body loss and its effect on the state of a Bose-Einstein condensate

    Full text link
    A Born-Markov master equation is used to investigate the decoherence of the state of a macroscopically occupied mode of a cold atom trap due to three-body loss. In the large number limit only coherent states remain pure for times longer than the decoherence time: the time it takes for just three atoms to be lost from the trap. For large numbers of atoms (N>10^4) the decoherence time is found to be much faster than the phase collapse time caused by intra-trap atomic collisions

    1D model for the dynamics and expansion of elongated Bose-Einstein condensates

    Full text link
    We present a 1D effective model for the evolution of a cigar-shaped Bose-Einstein condensate in time dependent potentials whose radial component is harmonic. We apply this model to investigate the dynamics and expansion of condensates in 1D optical lattices, by comparing our predictions with recent experimental data and theoretical results. We also discuss negative-mass effects which could be probed during the expansion of a condensate moving in an optical lattice.Comment: RevTeX4, 8 pages, 10 figures, extended and revised versio

    Thermalization of an impurity cloud in a Bose-Einstein condensate

    Full text link
    We study the thermalization dynamics of an impurity cloud inside a Bose-Einstein condensate at finite temperature, introducing a suitable Boltzmann equation. Some values of the temperature and of the initial impurity energy are considered. We find that, below the Landau critical velocity, the macroscopic population of the initial impurity state reduces its depletion rate. For sufficiently high velocities the opposite effect occurs. For appropriate parameters the collisions cool the condensate. The maximum cooling per impurity atom is obtained with multiple collisions.Comment: 4 pages 6 figure

    Dynamics of two colliding Bose-Einstein condensates in an elongated magneto-static trap

    Full text link
    We study the dynamics of two interacting Bose-Einstein condensates, by numerically solving two coupled Gross-Pitaevskii equations at zero temperature. We consider the case of a sudden transfer of atoms between two trapped states with different magnetic moments: the two condensates are initially created with the same density profile, but are trapped into different magnetic potentials, whose minima are vertically displaced by a distance much larger than the initial size of both condensates. Then the two condensates begin to perform collective oscillations, undergoing a complex evolution, characterized by collisions between the two condensates. We investigate the effects of their mutual interaction on the center-of-mass oscillations and on the time evolution of the aspect ratios. Our theoretical analysis provides a useful insight into the recent experimental observations by Maddaloni et al., cond-mat/0003402.Comment: 8 pages, 7 figures, RevTe

    A Closed Class of Hydrodynamical Solutions for the Collective Excitations of a Bose-Einstein Condensate

    Full text link
    A trajectory approach is taken to the hydrodynamical treatment of collective excitations of a Bose-Einstein condensate in a harmonic trap. The excitations induced by linear deformations of the trap are shown to constitute a broad class of solutions that can be fully described by a simple nonlinear matrix equation. An exact closed-form expression is obtained for the solution describing the mode {n=0, m=2} in a cylindrically symmetric trap, and the calculated amplitude-dependent frequency shift shows good agreement with the experimental results of the JILA group.Comment: RevTex, 4 pages, 1 eps figure, identical to the published versio

    Dynamics of a Bose-Einstein Condensate in an Anharmonic Trap

    Full text link
    We present a theoretical model to describe the dynamics of Bose-Einstein condensates in anharmonic trapping potentials. To first approximation the center-of-mass motion is separated from the internal condensate dynamics and the problem is reduced to the well known scaling solutions for the Thomas-Fermi radii. We discuss the validity of this approach and analyze the model for an anharmonic waveguide geometry which was recently realized in an experiment \cite{Ott2002c}
    • …
    corecore