465 research outputs found
Pseudogap of metallic layered nickelate R2-xSrxNiO4 (R=Nd, Eu) crystals measured using angle-resolved photoemission spectroscopy
We have investigated charge dynamics and electronic structures for single
crystals of metallic layered nickelates, R2-xSrxNiO4 (R=Nd, Eu), isostructural
to La2-xSrxCuO4. Angle-resolved photoemission spectroscopy on the
barely-metallic Eu0.9Sr1.1NiO4 (R=Eu, x=1.1) has revealed a large hole surface
of x2-y2 character with a high-energy pseudogap of the same symmetry and
comparable magnitude with those of underdoped (x<0.1) cuprates, although the
antiferromagnetic interactions are one order of magnitude smaller. This finding
strongly indicates that the momentum-dependent pseudogap feature in the layered
nickelate arises from the real-space charge correlation.Comment: 4 pages, 4 figures. Accepted in Physical Review Letter
LXR agonist increases apoE secretion from HepG2 spheroid, together with an increased production of VLDL and apoE-rich large HDL
<p>Abstract</p> <p>Background</p> <p>The physiological regulation of hepatic apoE gene has not been clarified, although the expression of apoE in adipocytes and macrophages has been known to be regulated by LXR.</p> <p>Methods and Results</p> <p>We investigated the effect of TO901317, a LXR agonist, on hepatic apoE production utilizing HepG2 cells cultured in spheroid form, known to be more differentiated than HepG2 cells in monolayer culture. Spheroid HepG2 cells were prepared in alginate-beads. The secretions of albumin, apoE and apoA-I from spheroid HepG2 cells were significantly increased compared to those from monolayer HepG2 cells, and these increases were accompanied by increased mRNA levels of apoE and apoA-I. Several nuclear receptors including LXRα also became abundant in nuclear fractions in spheroid HepG2 cells. Treatment with TO901317 significantly increased apoE protein secretion from spheroid HepG2 cells, which was also associated with the increased expression of apoE mRNA. Separation of the media with FPLC revealed that the production of apoE-rich large HDL particles were enhanced even at low concentration of TO901317, and at higher concentration of TO901317, production of VLDL particles increased as well.</p> <p>Conclusions</p> <p>LXR activation enhanced the expression of hepatic apoE, together with the alteration of lipoprotein particles produced from the differentiated hepatocyte-derived cells. HepG2 spheroids might serve as a good model of well-differentiated human hepatocytes for future investigations of hepatic lipid metabolism.</p
Binegativity and geometry of entangled states in two qubits
We prove that the binegativity is always positive for any two-qubit state. As
a result, as suggested by the previous works, the asymptotic relative entropy
of entanglement in two qubits does not exceed the Rains bound, and the
PPT-entanglement cost for any two-qubit state is determined to be the
logarithmic negativity of the state. Further, the proof reveals some
geometrical characteristics of the entangled states, and shows that the partial
transposition can give another separable approximation of the entangled state
in two qubits.Comment: 5 pages, 3 figures. I made the proof more transparen
Quantum phase transition in a minimal model for the Kondo effect in a Josephson junction
We propose a minimal model for the Josephson current through a quantum dot in
a Kondo regime. We start with the model that consists of an Anderson impurity
connected to two superconducting (SC) leads with the gaps
, where for the lead at left and right. We show that, when one of the SC gaps is
much larger than the others , the starting model can
be mapped exactly onto the single-channel model, which consists of the right
lead of and the Anderson impurity with an extra onsite SC gap of
. Here and are
defined with respect to the starting model, and is the level width
due to the coupling with the left lead. Based on this simplified model, we
study the ground-state properties for the asymmetric gap, , using the numerical renormalization group (NRG) method. The
results show that the phase difference of the SC gaps , which induces the Josephson current, disturbs the screening of the
local moment to destabilize the singlet ground state typical of the Kondo
system. It can also drive the quantum phase transition to a magnetic doublet
ground state, and at the critical point the Josephson current shows a
discontinuous change. The asymmetry of the two SC gaps causes a re-entrant
magnetic phase, in which the in-gap bound state lies close to the Fermi level.Comment: 23 pages, 13 figures, typos are correcte
Classification of qubit entanglement: SL(2,C) versus SU(2) invariance
The role of SU(2) invariants for the classification of multiparty
entanglement is discussed and exemplified for the Kempe invariant I_5 of pure
three-qubit states. It is found to being an independent invariant only in
presence of both W-type entanglement and threetangle. In this case, constant
I_5 admits for a wide range of both threetangle and concurrences. Furthermore,
the present analysis indicates that an SL^3 orbit of states with equal tangles
but continuously varying I_5 must exist. This means that I_5 provides no
information on the entanglement in the system in addition to that contained in
the tangles (concurrences and threetangle) themselves. Together with the
numerical evidence that I_5 is an entanglement monotone this implies that SU(2)
invariance or the monotone property are too weak requirements for the
characterization and quantification of entanglement for systems of three
qubits, and that SL(2,C) invariance is required. This conclusion can be
extended to general multipartite systems (including higher local dimension)
because the entanglement classes of three-qubit systems appear as subclasses.Comment: 9 pages, 10 figures, revtex
Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure
The spin-orbit interaction affects the electronic structure of solids in
various ways. Topological insulators are one example where the spin-orbit
interaction leads the bulk bands to have a non-trivial topology, observable as
gapless surface or edge states. Another example is the Rashba effect, which
lifts the electron-spin degeneracy as a consequence of spin-orbit interaction
under broken inversion symmetry. It is of particular importance to know how
these two effects, i.e. the non-trivial topology of electronic states and
Rashba spin splitting, interplay with each other. Here we show, through
sophisticated first-principles calculations, that BiTeI, a giant bulk Rashba
semiconductor, turns into a topological insulator under a reasonable pressure.
This material is shown to exhibit several unique features such as, a highly
pressure-tunable giant Rashba spin splitting, an unusual pressure-induced
quantum phase transition, and more importantly the formation of strikingly
different Dirac surface states at opposite sides of the material.Comment: 5 figures are include
Evaluation of the Imaging Process for a Novel Subtraction Method Using Apparent Diffusion Coefficient Values
Diffusion-weighted imaging may be used to obtain the apparent diffusion coefficient (ADC), which aids the diagnosis of cerebral infarction and tumors. An ADC reflects elements of free diffusion. Diffusion kurtosis imaging (DKI) has attracted attention as a restricted diffusion imaging technique. The ADC subtraction method (ASM) was developed to visualize restricted diffusion with high resolution by using two ADC maps taken with different diffusion times. We conducted the present study to provide a bridge between the reported basic ASM research and clinical research. We developed new imaging software for clinical use and evaluated its performance herein. This software performs the imaging process automatically and continuously at the pixel level, using ImageJ software. The new software uses a macro or a plugin which is compatible with various operating systems via a Java Virtual Machine. We tested the new imaging software’s performance by using a Jurkat cell bio-phantom, and the statistical evaluation of the performance clarified that the ASM values of 99.98% of the pixels in the bio-phantom and physiological saline were calculated accurately (p<0.001). The new software may serve as a useful tool for future clinical applications and restricted diffusion imaging research
Edge magnetoplasmons in periodically modulated structures
We present a microscopic treatment of edge magnetoplasmons (EMP's) within the
random-phase approximation for strong magnetic fields, low temperatures, and
filling factor , when a weak short-period superlattice potential is
imposed along the Hall bar. The modulation potential modifies both the spatial
structure and the dispersion relation of the fundamental EMP and leads to the
appearance of a novel gapless mode of the fundamental EMP. For sufficiently
weak modulation strengths the phase velocity of this novel mode is almost the
same as the group velocity of the edge states but it should be quite smaller
for stronger modulation. We discuss in detail the spatial structure of the
charge density of the renormalized and the novel fundamental EMP's.Comment: 8 pages, 4 figure
- …