102 research outputs found
Electronic Structure of New Multiple Band Pt-Pnictide Superconductors APt3P
We report LDA calculated band structure, densities of states and Fermi
surfaces for recently discovered Pt-pnictide superconductors APt3P
(A=Ca,Sr,La), confirming their multiple band nature. Electronic structure is
essentially three dimensional, in contrast to Fe pnictides and chalcogenides.
LDA calculated Sommerfeld coefficient agrees rather well with experimental
data, leaving little space for very strong coupling superconductivity,
suggested by experimental data on specific heat of SrPt3P. Elementary estimates
show, that the values of critical temperature can be explained by rather weak
or moderately strong coupling, while the decrease of superconducting transition
temperature Tc from Sr to La compound can be explained by corresponding
decrease of total density of states at the Fermi level N(E_F). The shape of the
density of states near the Fermi level suggests that in SrPt3P electron doping
(such as replacement Sr by La) decreases N(E_F) and Tc, while hole doping (e.g.
partial replacement of Sr with K, Rb or Cs, if possible) would increase N(E_F)
and possibly Tc.Comment: 5 pages, 5 figure
Novel multiple-band superconductor SrPt2As2
We present LDA calculated electronic structure of recently discovered
superconductor SrPt2As2 with Tc=5.2K. Despite its chemical composition and
crystal structure are somehow similar to FeAs-based high-temperature
superconductors, the electronic structure of SrPt2As2 is very much different.
Crystal structure is orthorhombic (or tetragonal if idealized) and has layered
nature with alternating PtAs4 and AsPt4 tetrahedra slabs sandwiched with Sr
ions. The Fermi level is crossed by Pt-5d states with rather strong admixture
of As-4p states. Fermi surface of SrPt2As2 is essentially three dimensional,
with complicated sheets corresponding to multiple bands. We compare SrPt2As2
with 1111 and 122 representatives of FeAs-class of superconductors, as well as
with isovalent (Ba,Sr)Ni2As2 superconductors. Brief discussion of
superconductivity in SrPt2As2 is also presented.Comment: 5 pages, 4 figure
Spin Liquid State around a Doped Hole in Insulating Cuprates
The numerically exact diagonalization study on small clusters of the t-J
model with the second- and third- neighbor hopping terms shows that a novel
spin liquid state is realized around a doped hole with momentum k=(pi,0) and
energy \sim 2J compared with that with (pi/2,pi/2) in insulating cuprates,
where the spin and charge degrees of freedom are approximately decoupled. Our
finding implies that the excitations in the insulating cuprates are mapped onto
the the d-wave resonating valence bond state.Comment: 4 pages, 4 EPS figures, to be published in J. Phys. Soc. Jpn. Vol.
69, No.1 January, 200
Antiferromagnetism and d-wave superconductivity in cuprates: a uster DMFT study
We present a new approach to investigate the coexistence of
antiferromagnetism and d-wave superconductivity in the two dimensional extended
Hubbard model within a numerically exact cluster dynamical mean-field
approximation. Self-consistent solutions with two non-zero order parameters
exists in the wide range of doping level and temperatures. A linearized
equation for energy spectrum near the Fermi level have been solved. The
resulting d-wave gap has the correct magnitude and k-dependence but some
distortion compare to the pure d_{x^2-y^2} superconducting order parameter due
to the presence of underlying antiferromagnetic ordering.Comment: 4 pages, 3 figure
Bilayer Splitting in the Electronic Structure of Heavily Overdoped Bi2Sr2CaCu2O8+d
The electronic structure of heavily overdoped
BiSrCaCuO is investigated by angle-resolved
photoemission spectroscopy. The long-sought bilayer band splitting in this
two-plane system is observed in both normal and superconducting states, which
qualitatively agrees with the bilayer Hubbard model calculations. The maximum
bilayer energy splitting is about 88 meV for the normal state feature, while it
is only about 20 meV for the superconducting peak. This anomalous behavior
cannot be reconciled with the quasiparticle picture.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let
Short-range spin correlations and induced local spin-singlet amplitude in the Hubbard model
In this paper, from the microscopic Hubbard Hamiltonian we extract the local
spin-singlet amplitude due to short-range spin correlations, and quantify its
strength near half-filling. As a first application of the present approach, we
study a problem of the energy dispersion and its d-wave modulation in the
insulating cuprates, SrCuOCl and CaCuOCl.
Without any adjustable parameters, most puzzling issues are naturally and
quantitatively explained within the present approach.Comment: 6 pages, 3 figure
Superconducting Gap and Strong In-Plane Anisotropy in Untwinned YBa2Cu3O7-d
With significantly improved sample quality and instrumental resolution, we
clearly identify in the (pi,0) ARPES spectra from YBa2Cu3O6.993, in the
superconducting state, the long-sought `peak-dip-hump' structure. This advance
allows us to investigate the large a-b anisotropy of the in-plane electronic
structure including, in particular, a 50% difference in the magnitude of the
superconducting gap that scales with the energy position of the hump feature.
This anisotropy, likely induced by the presence of the CuO chains, raises
serious questions about attempts to quantitatively explain the YBa2Cu3O7-d data
from various experiments using models based on a perfectly square lattice.Comment: Phys. Rev. Lett., in press. Revtex, 4 pages, 4 postscript figures
embedded in the tex
Luther-Emery Stripes, RVB Spin Liquid Background and High Tc Superconductivity
The stripe phase in high Tc cuprates is modeled as a single stripe coupled to
the RVB spin liquid background by the single particle hopping process. In
normal state, the strong pairing correlation inherent in RVB state is thus
transfered into the Luttinger stripe and drives it toward spin-gap formation
described by Luther-Emery Model. The establishment of global phase coherence in
superconducting state contributes to a more relevant coupling to
Luther-Emery Stripe and leads to gap opening in both spin and charge sectors.
Physical consequences of the present picture are discussed, and emphasis is put
on the unification of different energy scales relevant to cuprates, and good
agreement is found with the available experimental results, especially in
ARPES.Comment: 4 pages, RevTe
High - Temperature Superconductivity in Iron Based Layered Compounds
We present a review of basic experimental facts on the new class of high -
temperature superconductors - iron based layered compounds like REOFeAs
(RE=La,Ce,Nd,Pr,Sm...), AFe_2As_2 (A=Ba,Sr...), AFeAs (A=Li,...) and FeSe(Te).
We discuss electronic structure, including the role of correlations, spectrum
and role of collective excitations (phonons, spin waves), as well as the main
models, describing possible types of magnetic ordering and Cooper pairing in
these compounds.Comment: 43 pages, 30 figures, review talk on 90th anniversary of Physics
Uspekh
- …