24 research outputs found
Pelvic trauma : WSES classification and guidelines
Complex pelvic injuries are among the most dangerous and deadly trauma related lesions. Different classification systems exist, some are based on the mechanism of injury, some on anatomic patterns and some are focusing on the resulting instability requiring operative fixation. The optimal treatment strategy, however, should keep into consideration the hemodynamic status, the anatomic impairment of pelvic ring function and the associated injuries. The management of pelvic trauma patients aims definitively to restore the homeostasis and the normal physiopathology associated to the mechanical stability of the pelvic ring. Thus the management of pelvic trauma must be multidisciplinary and should be ultimately based on the physiology of the patient and the anatomy of the injury. This paper presents the World Society of Emergency Surgery (WSES) classification of pelvic trauma and the management Guidelines.Peer reviewe
Development of a cell formation heuristic by considering realistic data using principal component analysis and Taguchiâs method
Over the last four decades of research, numerous cell formation algorithms have been developed and tested, still this research remains of interest to this day. Appropriate manufacturing cells formation is the first step in designing a cellular manufacturing system. In cellular manufacturing, consideration to manufacturing flexibility and productionrelated data is vital for cell formation. The consideration to this realistic data makes cell formation problemvery complex and tedious. It leads to the invention and implementation of highly advanced and complex cell formation methods. In this paper an effort has been made to develop a simple and easy to understand/implement manufacturing cell formation heuristic procedure with considerations to the number of production and manufacturing flexibility-related parameters. The heuristic minimizes inter-cellular movement cost/time. Further, the proposed heuristic is modified for the application of principal component analysis and Taguchi's method. Numerical example is explained to illustrate the approach. A refinement in the results is observed with adoption of principal component analysis and Taguchi's method
Recommended from our members
Biaxial sensing suture breakage warning system for robotic surgery
The number of procedures performed with robotic surgery may exceed one million globally in 2018. The continual lack of haptic feedback, however, forces surgeons to rely on visual cues in order to avoid breaking sutures due to excessive applied force. To mitigate this problem, the authors developed and validated a novel grasper-integrated system with biaxial shear sensing and haptic feedback to warn the operator prior to anticipated suture breakage. Furthermore, the design enables facile suture manipulation without a degradation in efficacy, as determined via measured tightness of resulting suture knots. Biaxial shear sensors were integrated with a da Vinci robotic surgical system. Novice subjects (nâ=â17) were instructed to tighten 10 knots, five times with the Haptic Feedback System (HFS) enabled, five times with the system disabled. Seven suture failures occurred in trials with HFS enabled while seventeen occurred in trials without feedback. The biaxial shear sensing system reduced the incidence of suture failure by 59% (pâ=â0.0371). It also resulted in 25% lower average applied force in comparison to trials without feedback (pâ=â0.00034), which is relevant because average force was observed to play a role in suture breakage (pâ=â0.03925). An observed 55% decrease in standard deviation of knot quality when using the HFS also indicates an improvement in consistency when using the feedback system. These results suggest this system may improve outcomes related to knot tying tasks in robotic surgery and reduce instances of suture failure while not degrading the quality of knots produced
Neural Basis of Stimulus-Angle-Dependent Motor Control of Wind-Elicited Walking Behavior in the Cricket Gryllus bimaculatus
Crickets exhibit oriented walking behavior in response to air-current stimuli. Because crickets move in the opposite direction from the stimulus source, this behavior is considered to represent âescape behaviorâ from an approaching predator. However, details of the stimulus-angle-dependent control of locomotion during the immediate phase, and the neural basis underlying the directional motor control of this behavior remain unclear. In this study, we used a spherical-treadmill system to measure locomotory parameters including trajectory, turn angle and velocity during the immediate phase of responses to air-puff stimuli applied from various angles. Both walking direction and turn angle were correlated with stimulus angle, but their relationships followed different rules. A shorter stimulus also induced directionally-controlled walking, but reduced the yaw rotation in stimulus-angle-dependent turning. These results suggest that neural control of the turn angle requires different sensory information than that required for oriented walking. Hemi-severance of the ventral nerve cords containing descending axons from the cephalic to the prothoracic ganglion abolished stimulus-angle-dependent control, indicating that this control required descending signals from the brain. Furthermore, we selectively ablated identified ascending giant interneurons (GIs) in vivo to examine their functional roles in wind-elicited walking. Ablation of GI8-1 diminished control of the turn angle and decreased walking distance in the initial response. Meanwhile, GI9-1b ablation had no discernible effect on stimulus-angle-dependent control or walking distance, but delayed the reaction time. These results suggest that the ascending signals conveyed by GI8-1 are required for turn-angle control and maintenance of walking behavior, and that GI9-1b is responsible for rapid initiation of walking. It is possible that individual types of GIs separately supply the sensory signals required to control wind-elicited walking