251 research outputs found
The Dispersion Velocity of Galactic Dark Matter Particles
The self-consistent spatial distribution of particles of Galactic dark matter
is derived including their own gravitational potential, as also that of the
visible matter of the Galaxy. In order to reproduce the observed rotation curve
of the Galaxy the value of the dispersion velocity of the dark matter
particles, \rmsveldm, should be \sim 600\kmps or larger.Comment: RevTex, 4 pages, 1 ps figure, accepted for publication in Physical
Review Letter
DERMATOFITOSIS. ETIOLOGIA Y SUSCEPTIBILIDAD ANTIFUNGICA “IN VITRO” EN TRES CENTROS HOSPITALARIOS DE SANTIAGO (CHILE)
Con el objetivo de determinar la frecuencia de dermatofitos en lesiones sospechosas de micosis y evaluar su susceptibilidad “in vitro” frente a Clotrimazol (CLZ), Itraconazol (ITZ), Griseofulvina (GRI), Fluconazol(FCZ) y Terbinafina (TBF), se recolectaron 175 muestras (piel, pelo y uñas ) y datos epidemiológicos de cada paciente. El diagnóstico micológico se realizó mediante: un examen directo con KOH al 20% y cultivo en agar Sabouraud y Lactrimel, incubados a 25º y 37º por 21días. La susceptibilidad “in vitro” se realizó por el método de microdilución en caldo según recomendaciones NCCLS (documento M38-P), determinándose CIM 50 y CIM90.El examen directo fue positivo en e l 73,7% (n=129) de las muestras y el cultivo en 66,3% (n=116), aumentando a un 80,6% (n=141) al usar ambas técnicas. Los agentes aislados correspondieron a Trichophytonrubrum (81%), T. mentagrophytes(14,7%) y Microsporum canis (4,3%). En 110 cepas, la CIM50 para FCZ fue 0,25 μg/mL y 0,03 μg/mL para GRI, ITZ, CLZ y TBF. La CIM90 de FCZ fue 2,0 μg/mL, 0,12 μg/mL para ITZ y 0,06 μg/mL para CLZ, GRI y TBF.En general, los antifúngicos probados fueron activos frente a las cepas aisladas, excepto 2 cepas que mostraron CIM elevadas para ITZ.
A study of the neglected Galactic HII region NGC 2579 and its companion ESO 370-9
The Galactic HII region NGC 2579 has stayed undeservedly unexplored due to
identification problems which persisted until recently. Both NGC 2579 and its
companion ESO 370-9 have been misclassified as planetary or reflection nebula,
confused with each other and with other objects. Due to its high surface
brightness, high excitation, angular size of few arcminutes and relatively low
interstellar extinction, NGC 2579 is an ideal object for investigations in the
optical range. Located in the outer Galaxy, NGC 2579 is an excellent object for
studying the Galactic chemical abundance gradients. In this paper we present
the first comprehensive observational study on the nebular and stellar
properties of NGC 2579 and ESO 370-9, including the determination of electron
temperature, density structure, chemical composition, kinematics, distance, and
the identification and spectral classification of the ionizing stars, and
discuss the nature of ESO 370-9. Long slit spectrophotometric data in the
optical range were used to derive the nebular electron temperature, density and
chemical abundances and for the spectral classification of the ionizing star
candidates. Halpha and UBV CCD photometry was carried out to derive stellar
distances from spectroscopic parallax and to measure the ionizing photon flux.Comment: To be published in Astronomy & Astrophysic
Herschel observations in the ultracompact HII region Mon R2: Water in dense Photon-dominated regions (PDRs)
Mon R2, at a distance of 830 pc, is the only ultracompact HII region (UC HII)
where the photon-dominated region (PDR) between the ionized gas and the
molecular cloud can be resolved with Herschel. HIFI observations of the
abundant compounds 13CO, C18O, o-H2-18O, HCO+, CS, CH, and NH have been used to
derive the physical and chemical conditions in the PDR, in particular the water
abundance. The 13CO, C18O, o-H2-18O, HCO+ and CS observations are well
described assuming that the emission is coming from a dense (n=5E6 cm-3,
N(H2)>1E22 cm-2) layer of molecular gas around the UC HII. Based on our
o-H2-18O observations, we estimate an o-H2O abundance of ~2E-8. This is the
average ortho-water abundance in the PDR. Additional H2-18O and/or water lines
are required to derive the water abundance profile. A lower density envelope
(n~1E5 cm-3, N(H2)=2-5E22 cm-2) is responsible for the absorption in the NH
1_1-0_2 line. The emission of the CH ground state triplet is coming from both
regions with a complex and self-absorbed profile in the main component. The
radiative transfer modeling shows that the 13CO and HCO+ line profiles are
consistent with an expansion of the molecular gas with a velocity law, v_e =0.5
x (r/Rout)^{-1} km/s, although the expansion velocity is poorly constrained by
the observations presented here.Comment: 4 pages, 5 figure
HERSCHEL-HIFI spectroscopy of the intermediate mass protostar NGC7129 FIRS 2
HERSCHEL-HIFI observations of water from the intermediate mass protostar
NGC7129 FIRS 2 provide a powerful diagnostic of the physical conditions in this
star formation environment. Six spectral settings, covering four H216O and two
H218O lines, were observed and all but one H218O line were detected. The four
H2 16 O lines discussed here share a similar morphology: a narrower, \approx 6
km/s, component centered slightly redward of the systemic velocity of NGC7129
FIRS 2 and a much broader, \approx 25 km/s component centered blueward and
likely associated with powerful outflows. The narrower components are
consistent with emission from water arising in the envelope around the
intermediate mass protostar, and the abundance of H2O is constrained to \approx
10-7 for the outer envelope. Additionally, the presence of a narrow
self-absorption component for the lowest energy lines is likely due to
self-absorption from colder water in the outer envelope. The broader component,
where the H2O/CO relative abundance is found to be \approx 0.2, appears to be
tracing the same energetic region that produces strong CO emission at high J.Comment: 6 pages, 4 figures, accepted by A&
Submillimeter Emission from Water in the W3 Region
We have mapped the submillimeter emission from the 1(10)-1(01) transition of
ortho-water in the W3 star-forming region. A 5'x5' map of the W3 IRS4 and W3
IRS5 region reveals strong water lines at half the positions in the map. The
relative strength of the Odin lines compared to previous observations by SWAS
suggests that we are seeing water emission from an extended region. Across much
of the map the lines are double-peaked, with an absorption feature at -39 km/s;
however, some positions in the map show a single strong line at -43 km/s. We
interpret the double-peaked lines as arising from optically thick,
self-absorbed water emission near the W3 IRS5, while the narrower blue-shifted
lines originate in emission near W3 IRS4. In this model, the unusual appearance
of the spectral lines across the map results from a coincidental agreement in
velocity between the emission near W3 IRS4 and the blue peak of the more
complex lines near W3 IRS5. The strength of the water lines near W3 IRS4
suggests we may be seeing water emission enhanced in a photon-dominated region.Comment: Accepted to A&A Letters as part of the special Odin issue; 4 page
Herschel observations of the hydroxyl radical (OH) in young stellar objects
Water in Star-forming regions with Herschel (WISH) is a Herschel Key Program
investigating the water chemistry in young stellar objects (YSOs) during
protostellar evolution. Hydroxyl (OH) is one of the reactants in the chemical
network most closely linked to the formation and destruction of H2O.
High-temperature chemistry connects OH and H2O through the OH + H2 H2O + H
reactions. Formation of H2O from OH is efficient in the high-temperature regime
found in shocks and the innermost part of protostellar envelopes. Moreover, in
the presence of UV photons, OH can be produced from the photo-dissociation of
H2O. High-resolution spectroscopy of the OH 163.12 micron triplet towards HH 46
and NGC 1333 IRAS 2A was carried out with the Heterodyne Instrument for the Far
Infrared (HIFI) on board Herschel. The low- and intermediate-mass YSOs HH 46,
TMR 1, IRAS 15398-3359, DK Cha, NGC 7129 FIRS 2, and NGC 1333 IRAS 2A were
observed with the Photodetector Array Camera and Spectrometer (PACS) in four
transitions of OH and two [OI] lines. The OH transitions at 79, 84, 119, and
163 micron and [OI] emission at 63 and 145 micron were detected with PACS
towards the class I low-mass YSOs as well as the intermediate-mass and class I
Herbig Ae sources. No OH emission was detected from the class 0 YSO NGC 1333
IRAS 2A, though the 119 micron was detected in absorption. With HIFI, the
163.12 micron was not detected from HH 46 and only tentatively detected from
NGC 1333 IRAS 2A. The combination of the PACS and HIFI results for HH 46
constrains the line width (FWHM > 11 km/s) and indicates that the OH emission
likely originates from shocked gas. This scenario is supported by trends of the
OH flux increasing with the [OI] flux and the bolometric luminosity. Similar OH
line ratios for most sources suggest that OH has comparable excitation
temperatures despite the different physical properties of the sources.Comment: Accepted for publication in Astronomy and Astrophysics (Herschel
special issue
Strong CH+ J=1-0 emission and absorption in DR21
We report the first detection of the ground-state rotational transition of
the methylidyne cation CH+ towards the massive star-forming region DR21 with
the HIFI instrument onboard the Herschel satellite. The line profile exhibits a
broad emission line, in addition to two deep and broad absorption features
associated with the DR21 molecular ridge and foreground gas. These observations
allow us to determine a CH+ J=1-0 line frequency of 835137 +/- 3 MHz, in good
agreement with a recent experimental determination. We estimate the CH+ column
density to be a few 1e13 cm^-2 in the gas seen in emission, and > 1e14 cm^-2 in
the components responsible for the absorption, which is indicative of a high
line of sight average abundance [CH+]/[H] > 1.2x10^-8. We show that the CH+
column densities agree well with the predictions of state-of-the-art C-shock
models in dense UV-illuminated gas for the emission line, and with those of
turbulent dissipation models in diffuse gas for the absorption lines.Comment: Accepted for publication in A&
Sensitive limits on the abundance of cold water vapor in the DM Tau protoplanetary disk
We performed a sensitive search for the ground-state emission lines of ortho-
and para-water vapor in the DM Tau protoplanetary disk using the Herschel/HIFI
instrument. No strong lines are detected down to 3sigma levels in 0.5 km/s
channels of 4.2 mK for the 1_{10}--1_{01} line and 12.6 mK for the
1_{11}--0_{00} line. We report a very tentative detection, however, of the
1_{10}--1_{01} line in the Wide Band Spectrometer, with a strength of
T_{mb}=2.7 mK, a width of 5.6 km/s and an integrated intensity of 16.0 mK km/s.
The latter constitutes a 6sigma detection. Regardless of the reality of this
tentative detection, model calculations indicate that our sensitive limits on
the line strengths preclude efficient desorption of water in the UV illuminated
regions of the disk. We hypothesize that more than 95-99% of the water ice is
locked up in coagulated grains that have settled to the midplane.Comment: 5 pages, 3 figures. Accepted for publication in the Herschel HIFI
special issue of A&
- …