22 research outputs found

    Distributed Block Coordinate Descent for Minimizing Partially Separable Functions

    Get PDF
    In this work we propose a distributed randomized block coordinate descent method for minimizing a convex function with a huge number of variables/coordinates. We analyze its complexity under the assumption that the smooth part of the objective function is partially block separable, and show that the degree of separability directly influences the complexity. This extends the results in [Richtarik, Takac: Parallel coordinate descent methods for big data optimization] to a distributed environment. We first show that partially block separable functions admit an expected separable overapproximation (ESO) with respect to a distributed sampling, compute the ESO parameters, and then specialize complexity results from recent literature that hold under the generic ESO assumption. We describe several approaches to distribution and synchronization of the computation across a cluster of multi-core computers and provide promising computational results.Comment: in Recent Developments in Numerical Analysis and Optimization, 201

    Modelling targets for anticancer drug control optimization in physiologically structured cell population models

    No full text
    The main two pitfalls of therapeutics in clinical oncology, that limit increasing drug doses, are unwanted toxic side effects on healthy cell populations and occurrence of resistance to drugs in cancer cell populations. Depending on the constraint considered in the control problem at stake, toxicity or drug resistance, we present two different ways to model the evolution of proliferating cell populations, healthy and cancer, under the control of anti-cancer drugs. In the first case, we use a McKendrick age-structured model of the cell cycle, whereas in the second case, we use a model of evolutionary dynamics, physiologically structured according to a continuous phenotype standing for drug resistance. In both cases, we mention how drug targets may be chosen so as to accurately represent the effects of cytotoxic and of cytostatic drugs, separately, and how one may consider the problem of optimisation of combined therapies. © 2012 American Institute of Physics

    Multimodal decoding of human liver regeneration

    Get PDF
    The liver has a unique ability to regenerate1,2; however, in the setting of acute liver failure (ALF), this regenerative capacity is often overwhelmed, leaving emergency liver transplantation as the only curative option3-5. Here, to advance understanding of human liver regeneration, we use paired single-nucleus RNA sequencing combined with spatial profiling of healthy and ALF explant human livers to generate a single-cell, pan-lineage atlas of human liver regeneration. We uncover a novel ANXA2+ migratory hepatocyte subpopulation, which emerges during human liver regeneration, and a corollary subpopulation in a mouse model of acetaminophen (APAP)-induced liver regeneration. Interrogation of necrotic wound closure and hepatocyte proliferation across multiple timepoints following APAP-induced liver injury in mice demonstrates that wound closure precedes hepatocyte proliferation. Four-dimensional intravital imaging of APAP-induced mouse liver injury identifies motile hepatocytes at the edge of the necrotic area, enabling collective migration of the hepatocyte sheet to effect wound closure. Depletion of hepatocyte ANXA2 reduces hepatocyte growth factor-induced human and mouse hepatocyte migration in vitro, and abrogates necrotic wound closure following APAP-induced mouse liver injury. Together, our work dissects unanticipated aspects of liver regeneration, demonstrating an uncoupling of wound closure and hepatocyte proliferation and uncovering a novel migratory hepatocyte subpopulation that mediates wound closure following liver injury. Therapies designed to promote rapid reconstitution of normal hepatic microarchitecture and reparation of the gut-liver barrier may advance new areas of therapeutic discovery in regenerative medicine. </p
    corecore