160 research outputs found
Internal conversion coefficients for superheavy elements
The internal conversion coefficients (ICC) were calculated for all atomic
subshells of the elements with 104<=Z<=126, the E1...E4, M1...M4
multipolarities and the transition energies between 10 and 1000 keV. The atomic
screening was treated in the relativistic Hartree-Fock-Slater model. The Tables
comprising almost 90000 subshell and total ICC were recently deposited at LANL
preprint server.Comment: 6 pages including 3 figures, needs files myown.sty and epsfig.sty
(both included
Internal Conversion of Valence-Shell Electrons : Measurement and Analysis for the 10.84 KeV Transition in 206Bi
éĺ§ăăźă¸ăçľäşăăźă¸: ĺĺä˝ăŽăăźă¸äť
On the reliability of the theoretical internal conversion coefficients
Possible sources of uncertainties in the calculations of the internal
conversion coefficients are studied. The uncertainties induced by them are
estimated.Comment: 16 pages (including 3 figures inserted by 'epsfig' macro
Ultra-stable implanted 83Rb/83mKr electron sources for the energy scale monitoring in the KATRIN experiment
The KATRIN experiment aims at the direct model-independent determination of
the average electron neutrino mass via the measurement of the endpoint region
of the tritium beta decay spectrum. The electron spectrometer of the MAC-E
filter type is used, requiring very high stability of the electric filtering
potential. This work proves the feasibility of implanted 83Rb/83mKr calibration
electron sources which will be utilised in the additional monitor spectrometer
sharing the high voltage with the main spectrometer of KATRIN. The source
employs conversion electrons of 83mKr which is continuously generated by 83Rb.
The K-32 conversion line (kinetic energy of 17.8 keV, natural line width of 2.7
eV) is shown to fulfill the KATRIN requirement of the relative energy stability
of +/-1.6 ppm/month. The sources will serve as a standard tool for continuous
monitoring of KATRIN's energy scale stability with sub-ppm precision. They may
also be used in other applications where the precise conversion lines can be
separated from the low energy spectrum caused by the electron inelastic
scattering in the substrate.Comment: 30 pages, 10 figures, 1 table, minor revision of the preprint,
accepted by JINST on 5.2.201
- âŚ