63 research outputs found

    Group classification of (1+1)-Dimensional Schr\"odinger Equations with Potentials and Power Nonlinearities

    Full text link
    We perform the complete group classification in the class of nonlinear Schr\"odinger equations of the form iψt+ψxx+∣ψ∣γψ+V(t,x)ψ=0i\psi_t+\psi_{xx}+|\psi|^\gamma\psi+V(t,x)\psi=0 where VV is an arbitrary complex-valued potential depending on tt and x,x, γ\gamma is a real non-zero constant. We construct all the possible inequivalent potentials for which these equations have non-trivial Lie symmetries using a combination of algebraic and compatibility methods. The proposed approach can be applied to solving group classification problems for a number of important classes of differential equations arising in mathematical physics.Comment: 10 page

    Nonlocal looking equations can make nonlinear quantum dynamics local

    Full text link
    A general method for extending a non-dissipative nonlinear Schr\"odinger and Liouville-von Neumann 1-particle dynamics to an arbitrary number of particles is described. It is shown at a general level that the dynamics so obtained is completely separable, which is the strongest condition one can impose on dynamics of composite systems. It requires that for all initial states (entangled or not) a subsystem not only cannot be influenced by any action undertaken by an observer in a separated system (strong separability), but additionally that the self-consistency condition Tr2∘ϕ1+2t=ϕ1t∘Tr2Tr_2\circ \phi^t_{1+2}=\phi^t_{1}\circ Tr_2 is fulfilled. It is shown that a correct extension to NN particles involves integro-differential equations which, in spite of their nonlocal appearance, make the theory fully local. As a consequence a much larger class of nonlinearities satisfying the complete separability condition is allowed than has been assumed so far. In particular all nonlinearities of the form F(∣ψ(x)∣)F(|\psi(x)|) are acceptable. This shows that the locality condition does not single out logarithmic or 1-homeogeneous nonlinearities.Comment: revtex, final version, accepted in Phys.Rev.A (June 1998

    Lowest dimensional example on non-universality of generalized In\"on\"u-Wigner contractions

    Get PDF
    We prove that there exists just one pair of complex four-dimensional Lie algebras such that a well-defined contraction among them is not equivalent to a generalized IW-contraction (or to a one-parametric subgroup degeneration in conventional algebraic terms). Over the field of real numbers, this pair of algebras is split into two pairs with the same contracted algebra. The example we constructed demonstrates that even in the dimension four generalized IW-contractions are not sufficient for realizing all possible contractions, and this is the lowest dimension in which generalized IW-contractions are not universal. Moreover, this is also the first example of nonexistence of generalized IW-contraction for the case when the contracted algebra is not characteristically nilpotent and, therefore, admits nontrivial diagonal derivations. The lower bound (equal to three) of nonnegative integer parameter exponents which are sufficient to realize all generalized IW-contractions of four-dimensional Lie algebras is also found.Comment: 15 pages, extended versio

    Nonlinear Evolution Equations Invariant Under Schroedinger Group in three-dimensional Space-time

    Full text link
    A classification of all possible realizations of the Galilei, Galilei-similitude and Schroedinger Lie algebras in three-dimensional space-time in terms of vector fields under the action of the group of local diffeomorphisms of the space \R^3\times\C is presented. Using this result a variety of general second order evolution equations invariant under the corresponding groups are constructed and their physical significance are discussed

    Duality Principle and Braided Geometry

    Full text link
    We give an overview of a new kind symmetry in physics which exists between observables and states and which is made possible by the language of Hopf algebras and quantum geometry. It has been proposed by the author as a feature of Planck scale physics. More recent work includes corresponding results at the semiclassical level of Poisson-Lie groups and at the level of braided groups and braided geometry.Comment: 24 page

    Quantum vortices in systems obeying a generalized exclusion principle

    Full text link
    The paper deals with a planar particle system obeying a generalized exclusion principle (EP) and governed, in the mean field approximation, by a nonlinear Schroedinger equation. We show that the EP involves a mathematically simple and physically transparent mechanism, which allows the genesis of quantum vortices in the system. We obtain in a closed form the shape of the vortices and investigate its main physical properties. PACS numbers: 03.65.-w, 03.65.Ge, 05.45.YvComment: 7 pages, 4 figure

    Optimal atomic detection by control of detuning and spatial dependence of laser intensity

    Full text link
    Atomic detection by fluorescence may fail because of reflection from the laser or transmission without excitation. The detection probability for a given velocity range may be improved by controlling the detuning and the spatial dependence of the laser intensity. A simple optimization method is discussed and exemplified

    Contractions of Low-Dimensional Lie Algebras

    Full text link
    Theoretical background of continuous contractions of finite-dimensional Lie algebras is rigorously formulated and developed. In particular, known necessary criteria of contractions are collected and new criteria are proposed. A number of requisite invariant and semi-invariant quantities are calculated for wide classes of Lie algebras including all low-dimensional Lie algebras. An algorithm that allows one to handle one-parametric contractions is presented and applied to low-dimensional Lie algebras. As a result, all one-parametric continuous contractions for the both complex and real Lie algebras of dimensions not greater than four are constructed with intensive usage of necessary criteria of contractions and with studying correspondence between real and complex cases. Levels and co-levels of low-dimensional Lie algebras are discussed in detail. Properties of multi-parametric and repeated contractions are also investigated.Comment: 47 pages, 4 figures, revised versio

    Internally Electrodynamic Particle Model: Its Experimental Basis and Its Predictions

    Full text link
    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts, a) electric charges present with all material particles, b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation and c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schr\"odinger equation, mass, Einstein mass-energy relation, Newton's law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A specific solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.Comment: Presentation at the 27th Int Colloq on Group Theo Meth in Phys, 200

    On Aharonov-Casher bound states

    Full text link
    In this work bound states for the Aharonov-Casher problem are considered. According to Hagen's work on the exact equivalence between spin-1/2 Aharonov-Bohm and Aharonov-Casher effects, is known that the ∇⋅E\boldsymbol{\nabla}\cdot\mathbf{E} term cannot be neglected in the Hamiltonian if the spin of particle is considered. This term leads to the existence of a singular potential at the origin. By modeling the problem by boundary conditions at the origin which arises by the self-adjoint extension of the Hamiltonian, we derive for the first time an expression for the bound state energy of the Aharonov-Casher problem. As an application, we consider the Aharonov-Casher plus a two-dimensional harmonic oscillator. We derive the expression for the harmonic oscillator energies and compare it with the expression obtained in the case without singularity. At the end, an approach for determination of the self-adjoint extension parameter is given. In our approach, the parameter is obtained essentially in terms of physics of the problem.Comment: 11 pages, matches published versio
    • …
    corecore