225 research outputs found

    Vacancy induced energy band gap changes of semiconducting zigzag single walled carbon nanotubes

    Full text link
    In this work, we have examined how the multi-vacancy defects induced in the horizontal direction change the energetics and the electronic structure of semiconducting Single-Walled Carbon Nanotubes (SWCNTs). The electronic structure of SWCNTs is computed for each deformed configuration by means of real space, Order(N) Tight Binding Molecular Dynamic (O(N) TBMD) simulations. Energy band gap is obtained in real space through the behavior of electronic density of states (eDOS) near the Fermi level. Vacancies can effectively change the energetics and hence the electronic structure of SWCNTs. In this study, we choose three different kinds of semiconducting zigzag SWCNTs and determine the band gap modifications. We have selected (12,0), (13,0) and (14,0) zigzag SWCNTs according to n (mod 3) = 0, n (mod 3) = 1 and n (mod 3) = 2 classification. (12,0) SWCNT is metallic in its pristine state. The application of vacancies opens the electronic band gap and it goes up to 0.13 eV for a di- vacancy defected tube. On the other hand (13,0) and (14,0) SWCNTs are semiconductors with energy band gap values of 0.44 eV and 0.55 eV in their pristine state, respectively. Their energy band gap values decrease to 0.07 eV and 0.09 eV when mono-vacancy defects are induced in their horizontal directions. Then the di-vacancy defects open the band gap again. So in both cases, the semiconducting-metallic - semiconducting transitions occur. It is also shown that the band gap modification exhibits irreversible characteristics, which means that band gap values of the nanotubes do not reach their pristine values with increasing number of vacancies

    Non-minimally Coupled Gravitational and Electromagnetic Fields: pp-Wave Solutions

    Full text link
    We give the Lagrangian formulation of a generic non-minimally extended Einstein-Maxwell theory with an action that is linear in the curvature and quadratic in the electromagnetic field. We derive the coupled field equations by a first order variational principle using the method of Lagrange multipliers. We look for solutions describing plane-fronted Einstein-Maxwell waves with parallel rays. We give a family of exact solutions associated with a partially massless spin-2 photon and a partially massive spin-2 graviton

    A Comparison of the LVDP and {\Lambda}CDM Cosmological Models

    Full text link
    We compare the cosmological kinematics obtained via our law of linearly varying deceleration parameter (LVDP) with the kinematics obtained in the {\Lambda}CDM model. We show that the LVDP model is almost indistinguishable from the {\Lambda}CDM model up to the near future of our universe as far as the current observations are concerned, though their predictions differ tremendously into the far future.Comment: 6 pages, 5 figures, 1 table, matches the version to be published in International Journal of Theoretical Physic

    Dimensionality, topology, energy, the cosmological constant, and signature change

    Get PDF
    Using the concept of real tunneling configurations (classical signature change) and nucleation energy, we explore the consequences of an alternative minimization procedure for the Euclidean action in multiple-dimensional quantum cosmology. In both standard Hartle-Hawking type as well as Coleman type wormhole-based approaches, it is suggested that the action should be minimized among configurations of equal energy. In a simplified model, allowing for arbitrary products of spheres as Euclidean solutions, the favoured space-time dimension is 4, the global topology of spacelike slices being S1×S2{\bf S}^1 \times {\bf S}^2 (hence predicting a universe of Kantowski-Sachs type). There is, however, some freedom for a Kaluza-Klein scenario, in which case the observed spacelike slices are S3{\bf S}^3. In this case, the internal space is a product of two-spheres, and the total space-time dimension is 6, 8, 10 or 12.Comment: 34 pages, LaTeX, no figure

    Propagating Torsion in 3D-Gravity and Dynamical Mass Generation

    Full text link
    In this paper, fermions are minimally coupled to 3D-gravity where a dynamical torsion is introduced. A Kalb-Ramond field is non-minimally coupled to these fermions in a gauge-invariant way. We show that a 1-loop mass generation mechanism takes place for both the 2-form gauge field and the torsion. As for the fermions, no mass is dynamically generated: at 1-loop, there is only a mass shift proportional to the Yukawa coupling whenever the fermions have a non-vanishing tree-level mass.Comment: 13 pages, latex file, no figures, some corrections adde

    Solutions to the Wheeler-Dewitt Equation Inspired by the String Effective Action

    Full text link
    The Wheeler-DeWitt equation is derived from the bosonic sector of the heterotic string effective action assuming a toroidal compactification. The spatially closed, higher dimensional Friedmann-Robertson-Walker (FRW) cosmology is investigated and a suitable change of variables rewrites the equation in a canonical form. Real- and imaginary-phase exact solutions are found and a method of successive approximations is employed to find more general power series solutions. The quantum cosmology of the Bianchi IX universe is also investigated and a class of exact solutions is found.Comment: 21 pages of plain LaTeX, Fermilab-Pub-93/100-

    The trace left by signature-change-induced compactification

    Get PDF
    Recently, it has been shown that an infinite succession of classical signature changes (''signature oscillations'') can compactify and stabilize internal dimensions, and simultaneously leads, after a coarse graining type of average procedure, to an effective (''physical'') space-time geometry displaying the usual Lorentzian metric signature. Here, we consider a minimally coupled scalar field on such an oscillating background and study its effective dynamics. It turns out that the resulting field equation in four dimensions contains a coupling to some non-metric structure, the imprint of the ''microscopic'' signature oscillations on the effective properties of matter. In a multidimensional FRW model, this structure is identical to a massive scalar field evolving in its homogeneous mode.Comment: 15 pages, LaTeX, no figure

    The General Supersymmetric Solution of Topologically Massive Supergravity

    Full text link
    We find the general fully non-linear solution of topologically massive supergravity admitting a Killing spinor. It is of plane-wave type, with a null Killing vector field. Conversely, we show that all solutions with a null Killing vector are supersymmetric for one or the other choice of sign for the Chern-Simons coupling constant \mu. If \mu does not take the critical value \mu=\pm 1, these solutions are asymptotically regular on a Poincar\'e patch, but do not admit a smooth global compactification with boundary S^1\times\R. In the critical case, the solutions have a logarithmic singularity on the boundary of the Poincar\'e patch. We derive a Nester-Witten identity, which allows us to identify the associated charges, but we conclude that the presence of the Chern-Simons term prevents us from making a statement about their positivity. The Nester-Witten procedure is applied to the BTZ black hole.Comment: Minor correction
    corecore