215 research outputs found

    Genetic Influences on Brain Gene Expression in Rats Selected for Tameness and Aggression

    Full text link
    Inter-individual differences in many behaviors are partly due to genetic differences, but the identification of the genes and variants that influence behavior remains challenging. Here, we studied an F2 intercross of two outbred lines of rats selected for tame and aggressive behavior towards humans for more than 64 generations. By using a mapping approach that is able to identify genetic loci segregating within the lines, we identified four times more loci influencing tameness and aggression than by an approach that assumes fixation of causative alleles, suggesting that many causative loci were not driven to fixation by the selection. We used RNA sequencing in 150 F2 animals to identify hundreds of loci that influence brain gene expression. Several of these loci colocalize with tameness loci and may reflect the same genetic variants. Through analyses of correlations between allele effects on behavior and gene expression, differential expression between the tame and aggressive rat selection lines, and correlations between gene expression and tameness in F2 animals, we identify the genes Gltscr2, Lgi4, Zfp40 and Slc17a7 as candidate contributors to the strikingly different behavior of the tame and aggressive animals

    A complete classification of epistatic two-locus models

    Get PDF
    Background: The study of epistasis is of great importance in statistical genetics in fields such as linkage and association analysis and QTL mapping. In an effort to classify the types of epistasis in the case of two biallelic loci Li and Reich listed and described all models in the simplest case of 0/ 1 penetrance values. However, they left open the problem of finding a classification of two-locus models with continuous penetrance values. Results: We provide a complete classification of biallelic two-locus models. In addition to solving the classification problem for dichotomous trait disease models, our results apply to any instance where real numbers are assigned to genotypes, and provide a complete framework for studying epistasis in QTL data. Our approach is geometric and we show that there are 387 distinct types of two-locus models, which can be reduced to 69 when symmetry between loci and alleles is accounted for. The model types are defined by 86 circuits, which are linear combinations of genotype values, each of which measures a fundamental unit of interaction. Conclusion: The circuits provide information on epistasis beyond that contained in the additive × additive, additive × dominance, and dominance × dominance interaction terms. We discuss th

    How To Perform Meaningful Estimates of Genetic Effects

    Get PDF
    Although the genotype-phenotype map plays a central role both in Quantitative and Evolutionary Genetics, the formalization of a completely general and satisfactory model of genetic effects, particularly accounting for epistasis, remains a theoretical challenge. Here, we use a two-locus genetic system in simulated populations with epistasis to show the convenience of using a recently developed model, NOIA, to perform estimates of genetic effects and the decomposition of the genetic variance that are orthogonal even under deviations from the Hardy-Weinberg proportions. We develop the theory for how to use this model in interval mapping of quantitative trait loci using Halley-Knott regressions, and we analyze a real data set to illustrate the advantage of using this approach in practice. In this example, we show that departures from the Hardy-Weinberg proportions that are expected by sampling alone substantially alter the orthogonal estimates of genetic effects when other statistical models, like F2 or G2A, are used instead of NOIA. Finally, for the first time from real data, we provide estimates of functional genetic effects as sets of effects of natural allele substitutions in a particular genotype, which enriches the debate on the interpretation of genetic effects as implemented both in functional and in statistical models. We also discuss further implementations leading to a completely general genotype-phenotype map

    Replication and Explorations of High-Order Epistasis Using a Large Advanced Intercross Line Pedigree

    Get PDF
    Dissection of the genetic architecture of complex traits persists as a major challenge in biology; despite considerable efforts, much remains unclear including the role and importance of genetic interactions. This study provides empirical evidence for a strong and persistent contribution of both second- and third-order epistatic interactions to long-term selection response for body weight in two divergently selected chicken lines. We earlier reported a network of interacting loci with large effects on body weight in an F2 intercross between these high– and low–body weight lines. Here, most pair-wise interactions in the network are replicated in an independent eight-generation advanced intercross line (AIL). The original report showed an important contribution of capacitating epistasis to growth, meaning that the genotype at a hub in the network releases the effects of one or several peripheral loci. After fine-mapping of the loci in the AIL, we show that these interactions were persistent over time. The replication of five of six originally reported epistatic loci, as well as the capacitating epistasis, provides strong empirical evidence that the originally observed epistasis is of biological importance and is a contributor in the genetic architecture of this population. The stability of genetic interaction mechanisms over time indicates a non-transient role of epistasis on phenotypic change. Third-order epistasis was for the first time examined in this study and was shown to make an important contribution to growth, which suggests that the genetic architecture of growth is more complex than can be explained by two-locus interactions only. Our results illustrate the importance of designing studies that facilitate exploration of epistasis in populations for obtaining a comprehensive understanding of the genetics underlying a complex trait

    Modelling dominance in a flexible intercross analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this paper is to develop a flexible model for analysis of quantitative trait loci (QTL) in outbred line crosses, which includes both additive and dominance effects. Our flexible intercross analysis (FIA) model accounts for QTL that are not fixed within founder lines and is based on the variance component framework. Genome scans with FIA are performed using a score statistic, which does not require variance component estimation.</p> <p>Results</p> <p>Simulations of a pedigree with 800 <it>F</it><sub>2 </sub>individuals showed that the power of FIA including both additive and dominance effects was almost 50% for a QTL with equal allele frequencies in both lines with complete dominance and a moderate effect, whereas the power of a traditional regression model was equal to the chosen significance value of 5%. The power of FIA without dominance effects included in the model was close to those obtained for FIA with dominance for all simulated cases except for QTL with overdominant effects. A genome-wide linkage analysis of experimental data from an <it>F</it><sub>2 </sub>intercross between Red Jungle Fowl and White Leghorn was performed with both additive and dominance effects included in FIA. The score values for chicken body weight at 200 days of age were similar to those obtained in FIA analysis without dominance.</p> <p>Conclusion</p> <p>We have extended FIA to include QTL dominance effects. The power of FIA was superior, or similar, to standard regression methods for QTL effects with dominance. The difference in power for FIA with or without dominance is expected to be small as long as the QTL effects are not overdominant. We suggest that FIA with only additive effects should be the standard model to be used, especially since it is more computationally efficient.</p

    Epistasis: Obstacle or Advantage for Mapping Complex Traits?

    Get PDF
    Identification of genetic loci in complex traits has focused largely on one-dimensional genome scans to search for associations between single markers and the phenotype. There is mounting evidence that locus interactions, or epistasis, are a crucial component of the genetic architecture of biologically relevant traits. However, epistasis is often viewed as a nuisance factor that reduces power for locus detection. Counter to expectations, recent work shows that fitting full models, instead of testing marker main effect and interaction components separately, in exhaustive multi-locus genome scans can have higher power to detect loci when epistasis is present than single-locus scans, and improvement that comes despite a much larger multiple testing alpha-adjustment in such searches. We demonstrate, both theoretically and via simulation, that the expected power to detect loci when fitting full models is often larger when these loci act epistatically than when they act additively. Additionally, we show that the power for single locus detection may be improved in cases of epistasis compared to the additive model. Our exploration of a two step model selection procedure shows that identifying the true model is difficult. However, this difficulty is certainly not exacerbated by the presence of epistasis, on the contrary, in some cases the presence of epistasis can aid in model selection. The impact of allele frequencies on both power and model selection is dramatic

    MAPfastR: Quantitative Trait Loci Mapping in Outbred Line Crosses

    Get PDF
    MAPfastR is a software package developed to analyze quantitative trait loci data from inbred and outbred line-crosses. The package includes a number of modules for fast and accurate quantitative trait loci analyses. It has been developed in the R language for fast and comprehensive analyses of large datasets. MAPfastR is freely available at: http://www.computationalgenetics.se/?page_id=7.Swedish Foundation for Strategic Research (Future Research Leader program), European Science Foundation (EURYI Award)

    Fine mapping and replication of QTL in outbred chicken advanced intercross lines

    Get PDF
    Background: Linkage mapping is used to identify genomic regions affecting the expression of complex traits. However, when experimental crosses such as F2 populations or backcrosses are used to map regions containing a Quantitative Trait Locus (QTL), the size of the regions identified remains quite large, i.e. 10 or more Mb. Thus, other experimental strategies are needed to refine the QTL locations. Advanced Intercross Lines (AIL) are produced by repeated intercrossing of F2 animals and successive generations, which decrease linkage disequilibrium in a controlled manner. Although this approach is seen as promising, both to replicate QTL analyses and fine-map QTL, only a few AIL datasets, all originating from inbred founders, have been reported in the literature. Methods: We have produced a nine-generation AIL pedigree (n = 1529) from two outbred chicken lines divergently selected for body weight at eight weeks of age. All animals were weighed at eight weeks of age and genotyped for SNP located in nine genomic regions where significant or suggestive QTL had previously been detected in the F2 population. In parallel, we have developed a novel strategy to analyse the data that uses both genotype and pedigree information of all AIL individuals to replicate the detection of and fine-map QTL affecting juvenile body weight. Results: Five of the nine QTL detected with the original F2 population were confirmed and fine-mapped with the AIL, while for the remaining four, only suggestive evidence of their existence was obtained. All original QTL were confirmed as a single locus, except for one, which split into two linked QTL. Conclusions: Our results indicate that many of the QTL, which are genome-wide significant or suggestive in the analyses of large intercross populations, are true effects that can be replicated and fine-mapped using AIL. Key factors for success are the use of large populations and powerful statistical tools. Moreover, we believe that the statistical methods we have developed to efficiently study outbred AIL populations will increase the number of organisms for which in-depth complex traits can be analyzed
    corecore