1,363 research outputs found

    A contiuum model for low temperature relaxation of crystal steps

    Full text link
    High and low temperature relaxation of crystal steps are described in a unified picture, using a continuum model based on a modified expression of the step free energy. Results are in agreement with experiments and Monte Carlo simulations of step fluctuations and monolayer cluster diffusion and relaxation. In an extended model where mass exchange with neighboring terraces is allowed, step transparency and a low temperature regime for unstable step meandering are found.Comment: Submitted to Phys.Rev.Let

    Re-expansion of balloon-expandable stents after growth

    Get PDF
    AbstractObjectives. The purpose of this study was to evaluate the feasibility of re-expansion of balloon expandable intravascular stents and to examine the gross and histologic effects of re-expansion on vascular integrity.Background. Intravascular stents have been used successfully as an adjunct to balloon dilation of congenital pulmonary artery branch stenosis and postoperative stenosis of the pulmonary arteries in children. However, use of rigid stents in children could result in development of relative stenosis at the site of stent implantation with subsequent growth of the child.Methods. Stainless steel “iliac” stents were placed in the thoracic aorta of 10 normal juvenile swine by a transcatheter technique. Angiography and re-expansion were performed at a mean of 11 weeks (n = 9) and again at 18 weeks (n = 5). After euthanasia, the aortic specimens were removed for gross and histologic examination.Results. Stents were successfully implanted in 10 swine. Re-expansion was successfully performed in each animal at 11 weeks and at 18 weeks. Aortic growth produced a relative constriction of the aorta of 20% ± 10% (mean ± SD) at the site of stent implantation at both 11 and 18 weeks. Re-expansion produced a significant increase in mean stent diameter from 10.1 ± 1 mm to 12.3 ± 1.2 mm at 11 weeks and from 11.2 ± 0.7 to 13.5 ± 1.1 mm at 18 weeks after implantation (p < 0.001). Balloon dilation produced a relative increase in stent diameter of 21% ± 7% at 11 weeks and 18% ± 4% at 18 weeks. Stent re-expansion was accompanied by plastic deformation of the neointima without neointimal dissection. Where neointima was thick, there was no evidence of neointimal abrasion, but where neointima was thin, areas of localized neointimal abrasion were observed with focal fibrin and platelet adherence to the stent struts. There was no evidence of medial or adventitial hemorrhage or dissection produced by re-expansion.Conclusions. Re-expansion of intravascular stents is feasible after growth in juvenile swine without significant injury to neointima, media or adventitia. The results of this study support careful and selective use of intravascular stents as an adjunct to balloon dilation of congenital stenoses in children

    Phase Separation of Crystal Surfaces: A Lattice Gas Approach

    Full text link
    We consider both equilibrium and kinetic aspects of the phase separation (``thermal faceting") of thermodynamically unstable crystal surfaces into a hill--valley structure. The model we study is an Ising lattice gas for a simple cubic crystal with nearest--neighbor attractive interactions and weak next--nearest--neighbor repulsive interactions. It is likely applicable to alkali halides with the sodium chloride structure. Emphasis is placed on the fact that the equilibrium crystal shape can be interpreted as a phase diagram and that the details of its structure tell us into which surface orientations an unstable surface will decompose. We find that, depending on the temperature and growth conditions, a number of interesting behaviors are expected. For a crystal in equilibrium with its vapor, these include a low temperature regime with logarithmically--slow separation into three symmetrically--equivalent facets, and a higher temperature regime where separation proceeds as a power law in time into an entire one--parameter family of surface orientations. For a crystal slightly out of equilibrium with its vapor (slow crystal growth or etching), power--law growth should be the rule at late enough times. However, in the low temperature regime, the rate of separation rapidly decreases as the chemical potential difference between crystal and vapor phases goes to zero.Comment: 16 pages (RevTex 3.0); 12 postscript figures available on request ([email protected]). Submitted to Physical Review E. SFU-JDSDJB-94-0

    Quasiperiodic Tip Splitting in Directional Solidification

    Full text link
    We report experimental results on the tip splitting dynamics of seaweed growth in directional solidification of succinonitrile alloys with poly(ethylene oxide) or acetone as solutes. The seaweed or dense branching morphology was selected by solidifying grains which are oriented close to the {111} plane. Despite the random appearance of the growth, a quasiperiodic tip splitting morphology was observed in which the tip alternately splits to the left and to the right. The tip splitting frequency f was found to be related to the growth velocity V as a power law f V^{1.5}. This finding is consistent with the predictions of a tip splitting model that is also presented. Small anisotropies are shown to lead to different kinds of seaweed morphologies.Comment: 4 pages, 7 figures, submitted to Physical Review Letter

    Front Stability in Mean Field Models of Diffusion Limited Growth

    Full text link
    We present calculations of the stability of planar fronts in two mean field models of diffusion limited growth. The steady state solution for the front can exist for a continuous family of velocities, we show that the selected velocity is given by marginal stability theory. We find that naive mean field theory has no instability to transverse perturbations, while a threshold mean field theory has such a Mullins-Sekerka instability. These results place on firm theoretical ground the observed lack of the dendritic morphology in naive mean field theory and its presence in threshold models. The existence of a Mullins-Sekerka instability is related to the behavior of the mean field theories in the zero-undercooling limit.Comment: 26 pp. revtex, 7 uuencoded ps figures. submitted to PR

    Linear theory of unstable growth on rough surfaces

    Full text link
    Unstable homoepitaxy on rough substrates is treated within a linear continuum theory. The time dependence of the surface width W(t)W(t) is governed by three length scales: The characteristic scale l0l_0 of the substrate roughness, the terrace size lDl_D and the Ehrlich-Schwoebel length lESl_{ES}. If lESlDl_{ES} \ll l_D (weak step edge barriers) and l0lmlDlD/lESl_0 \ll l_m \sim l_D \sqrt{l_D/l_{ES}}, then W(t)W(t) displays a minimum at a coverage θmin(lD/lES)2\theta_{\rm min} \sim (l_D/l_{ES})^2, where the initial surface width is reduced by a factor l0/lml_0/l_m. The r\^{o}le of deposition and diffusion noise is analyzed. The results are applied to recent experiments on the growth of InAs buffer layers [M.F. Gyure {\em et al.}, Phys. Rev. Lett. {\bf 81}, 4931 (1998)]. The overall features of the observed roughness evolution are captured by the linear theory, but the detailed time dependence shows distinct deviations which suggest a significant influence of nonlinearities

    Identification of novel subgroup a variants with enhanced receptor binding and replicative capacity in primary isolates of anaemogenic strains of feline leukaemia virus

    Get PDF
    &lt;b&gt;BACKGROUND:&lt;/b&gt; The development of anaemia in feline leukaemia virus (FeLV)-infected cats is associated with the emergence of a novel viral subgroup, FeLV-C. FeLV-C arises from the subgroup that is transmitted, FeLV-A, through alterations in the amino acid sequence of the receptor binding domain (RBD) of the envelope glycoprotein that result in a shift in the receptor usage and the cell tropism of the virus. The factors that influence the transition from subgroup A to subgroup C remain unclear, one possibility is that a selective pressure in the host drives the acquisition of mutations in the RBD, creating A/C intermediates with enhanced abilities to interact with the FeLV-C receptor, FLVCR. In order to understand further the emergence of FeLV-C in the infected cat, we examined primary isolates of FeLV-C for evidence of FeLV-A variants that bore mutations consistent with a gradual evolution from FeLV-A to FeLV-C.&lt;p&gt;&lt;/p&gt; &lt;b&gt;RESULTS:&lt;/b&gt; Within each isolate of FeLV-C, we identified variants that were ostensibly subgroup A by nucleic acid sequence comparisons, but which bore mutations in the RBD. One such mutation, N91D, was present in multiple isolates and when engineered into a molecular clone of the prototypic FeLV-A (Glasgow-1), enhanced replication was noted in feline cells. Expression of the N91D Env on murine leukaemia virus (MLV) pseudotypes enhanced viral entry mediated by the FeLV-A receptor THTR1 while soluble FeLV-A Env bearing the N91D mutation bound more efficiently to mouse or guinea pig cells bearing the FeLV-A and -C receptors. Long-term in vitro culture of variants bearing the N91D substitution in the presence of anti-FeLV gp70 antibodies did not result in the emergence of FeLV-C variants, suggesting that additional selective pressures in the infected cat may drive the subsequent evolution from subgroup A to subgroup C.&lt;p&gt;&lt;/p&gt; &lt;b&gt;CONCLUSIONS:&lt;/b&gt; Our data support a model in which variants of FeLV-A, bearing subtle differences in the RBD of Env, may be predisposed towards enhanced replication in vivo and subsequent conversion to FeLV-C. The selection pressures in vivo that drive the emergence of FeLV-C in a proportion of infected cats remain to be established

    Regular dendritic patterns induced by non-local time-periodic forcing

    Full text link
    The dynamic response of dendritic solidification to spatially homogeneous time-periodic forcing has been studied. Phase-field calculations performed in two dimensions (2D) and experiments on thin (quasi 2D) liquid crystal layers show that the frequency of dendritic side-branching can be tuned by oscillatory pressure or heating. The sensitivity of this phenomenon to the relevant parameters, the frequency and amplitude of the modulation, the initial undercooling and the anisotropies of the interfacial free energy and molecule attachment kinetics, has been explored. It has been demonstrated that besides the side-branching mode synchronous with external forcing as emerging from the linear Wentzel-Kramers-Brillouin analysis, modes that oscillate with higher harmonic frequencies are also present with perceptible amplitudes.Comment: 15 pages, 23 figures, Submitted to Phys. Rev.

    Nonmonotonic roughness evolution in unstable growth

    Full text link
    The roughness of vapor-deposited thin films can display a nonmonotonic dependence on film thickness, if the smoothening of the small-scale features of the substrate dominates over growth-induced roughening in the early stage of evolution. We present a detailed analysis of this phenomenon in the framework of the continuum theory of unstable homoepitaxy. Using the spherical approximation of phase ordering kinetics, the effect of nonlinearities and noise can be treated explicitly. The substrate roughness is characterized by the dimensionless parameter Q=W0/(k0a2)Q = W_0/(k_0 a^2), where W0W_0 denotes the roughness amplitude, k0k_0 is the small scale cutoff wavenumber of the roughness spectrum, and aa is the lattice constant. Depending on QQ, the diffusion length lDl_D and the Ehrlich-Schwoebel length lESl_{ES}, five regimes are identified in which the position of the roughness minimum is determined by different physical mechanisms. The analytic estimates are compared by numerical simulations of the full nonlinear evolution equation.Comment: 16 pages, 6 figures, to appear on Phys. Rev.
    corecore