134 research outputs found
Crown plasticity enables trees to optimize canopy packing in mixed-species forests
It has been suggested that diverse forests utilize canopy space more efficiently than speciesâpoor ones, as mixing species with complementary architectural and physiological traits allows trees to pack more densely. However, whether positive canopy packingâdiversity relationships are a general feature of forests remains unclear. Using crown allometric data collected for 12Â 939 trees from permanent forest plots across Europe, we test (i) whether diversity promotes canopy packing across forest types and (ii) whether increased canopy packing occurs primarily through vertical stratification of tree crowns or as a result of intraspecific plasticity in crown morphology. We found that canopy packing efficiency increased markedly in response to species richness across a range of forest types and species combinations. Positive canopy packingâdiversity relationships were primarily driven by the fact that trees growing in mixture had sizably larger crowns (38% on average) than those in monoculture. The ability of trees to plastically adapt the shape and size of their crowns in response to changes in local competitive environment is critical in allowing mixedâspecies forests to optimize the use of canopy space. By promoting the development of denser and more structurally complex canopies, species mixing can strongly impact nutrient cycling and storage in forest ecosystems.The research leading to these results received funding from the
European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n°
265171.This is the accepted manuscript. The final version is available at http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.12428/abstract
Climate modulates the effects of tree diversity on forest productivity
Despite growing evidence that, on average, diverse forests tend to be more productive than speciesâpoor ones, individual studies often report strongly contrasting relationships between tree species richness and aboveâground wood production (AWP). In the attempt to reconcile these apparently inconsistent results, we explored whether the strength and shape of AWPâdiversity relationships shifts along spatial and temporal environmental gradients in forests across Europe. We used tree ring data from a network of permanent forest plots distributed at six sites across Europe to estimate annual AWP over a 15âyear period (1997â2011). We then tested whether the relationship between tree species richness and AWP changes (i) across sites as a function of largeâscale gradients in climatic productivity and tree packing density and (ii) among years within each sites as a result of fluctuating climatic conditions. AWPâspecies richness relationships varied markedly among sites. As predicted by theory, the relationship shifted from strongly positive at sites where climate imposed a strong limitation on wood production and tree packing densities were low, to weakly negative at sites where climatic conditions for growth were most suitable. In contrast, we found no consistent effect of interannual fluctuations in climate on the strength of AWPâspecies richness relationships within sites. Synthesis. Our results indicate that the shape and strength of the relationship between tree diversity and forest productivity depends critically on environmental context. Across Europe, tree diversity shows the greatest potential to positively influence forest productivity at either end of the latitudinal gradient, where adverse climatic conditions limit productivity and lead to the development of less densely packed stands.The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 265171.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1111/1365-2745.1252
Species richness influences the spatial distribution of trees in European forests
The functioning of plant communities is strongly influenced by the number of species in the community and their spatial arrangement. This is because plants interact with their nearest neighbors and this interaction is expected to be stronger when the interacting individuals are ecologically similar in terms of resource use. Recent evidence shows that species richness alters the balance of intra- versus interspecific competition, but the effect of species richness, and phylogenetic and functional diversity on the spatial pattern of the plant communities remain less studied. Even far, how forest stand structure derived from past management practices can influence the relationship between species richness and spatial pattern is still unknown. Here, we evaluate the spatial distribution of woody individuals (DBH >7.5 cm) in 209 forest stands (i.e. plots) with an increasing level of species richness (from 1 up to 10 species) in six forest types along a latitudinal gradient in Europe. We used completely mapped plots to investigate the spatial pattern in each forest stand with point pattern techniques. We fitted linear models to analyze the effect of species richness (positively correlated with phylogenetic diversity) and functional diversity on tree spatial arrangements. We also controled this relationship by forest type and stand structure as a proxy of the management legacy. Our results showed a generalized positive effect of species richness and functional diversity on the degree of spatial clustering of trees, and on the spatial independence of tree sizes regardless of the forest type. Moreover, current tree spatial arrangements were still conditioned by its history of management; however its effect was independent of the number of species in the community. Our study showed that species richness and functional diversity are relevant attributes of forests influencing the spatial pattern of plant communities, and consequently forest functioning. © 2019 Nordic Society Oikos. Published by John Wiley & Sons LtdThis research was supported by the FunDivEUROPE project, receiving funding from the European Union Seventh Framework Programme (FP7/2007â2013) under grant agreement no.265171, the Spanishâfunded project REMEDINAL TEâCM S2018/EMTâ4338 and COMEDIAS FEDER/Ministerio de Ciencia, InnovaciĂłn y Universidades â Agencia Estatal de InvestigaciĂłn/_Proyecto CGL2017â83170âR. RB was funded by a Marie SkĆodowskaâCurie IntraâEuropean fellowship (grant agreement no. 302445)
Simulation of Flow of Mixtures Through Anisotropic Porous Media using a Lattice Boltzmann Model
We propose a description for transient penetration simulations of miscible
and immiscible fluid mixtures into anisotropic porous media, using the lattice
Boltzmann (LB) method. Our model incorporates hydrodynamic flow, diffusion,
surface tension, and the possibility for global and local viscosity variations
to consider various types of hardening fluids. The miscible mixture consists of
two fluids, one governed by the hydrodynamic equations and one by diffusion
equations. We validate our model on standard problems like Poiseuille flow, the
collision of a drop with an impermeable, hydrophobic interface and the
deformation of the fluid due to surface tension forces. To demonstrate the
applicability to complex geometries, we simulate the invasion process of
mixtures into wood spruce samples.Comment: Submitted to EPJ
Estimate of Leaf Area Index in an Old-Growth Mixed Broadleaved-Korean Pine Forest in Northeastern China
Leaf area index (LAI) is an important variable in the study of forest ecosystem processes, but very few studies are designed to monitor LAI and the seasonal variability in a mixed forest using non-destructive sampling. In this study, first, true LAI from May 1st and November 15th was estimated by making several calibrations to LAI as measured from the WinSCANOPY 2006 Plant Canopy Analyzer. These calibrations include a foliage element (shoot, that is considered to be a collection of needles) clumping index measured directly from the optical instrument, TRAC (Tracing Radiation and Architecture of Canopies); a needle-to-shoot area ratio obtained from shoot samples; and a woody-to-total area ratio. Second, by periodically combining true LAI (May 1st) with the seasonality of LAI for deciduous and coniferous species throughout the leaf-expansion season (from May to August), we estimated LAI of each investigation period in the leaf-expansion season. Third, by combining true LAI (November 15th) with litter trap data (both deciduous and coniferous species), we estimated LAI of each investigation period during the leaf-fall season (from September to mid-November). Finally, LAI for the entire canopy then was derived from the initial leaf expansion to the leaf fall. The results showed that LAI reached its peak with a value of 6.53 m2 mâ2 (a corresponding value of 3.83 m2 mâ2 from optical instrument) in early August, and the mean LAI was 4.97 m2 mâ2 from May to November using the proposed method. The optical instrument method underestimated LAI by an average of 41.64% (SDâ=â6.54) throughout the whole study period compared to that estimated by the proposed method. The result of the present work implied that our method would be suitable for measuring LAI, for detecting the seasonality of LAI in a mixed forest, and for measuring LAI seasonality for each species
The number of tree species on Earth
One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are âŒ73,000 tree species globally, among which âŒ9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness
Global patterns and environmental drivers of forest functional composition
Aim: To determine the relationships between the functional trait composition of forest communities and environmental gradients across scales and biomes and the role of species relative abundances in these relationships. /
Location: Global. /
Time period: Recent. /
Major taxa studied: Trees. /
Methods: We integrated species abundance records from worldwide forest inventories and associated functional traits (wood density, specific leaf area and seed mass) to obtain a data set of 99,953 to 149,285 plots (depending on the trait) spanning all forested continents. We computed community-weighted and unweighted means of trait values for each plot and related them to three broad environmental gradients and their interactions (energy availability, precipitation and soil properties) at two scales (global and biomes). /
Results: Our models explained up to 60% of the variance in trait distribution. At global scale, the energy gradient had the strongest influence on traits. However, within-biome models revealed different relationships among biomes. Notably, the functional composition of tropical forests was more influenced by precipitation and soil properties than energy availability, whereas temperate forests showed the opposite pattern. Depending on the trait studied, response to gradients was more variable and proportionally weaker in boreal forests. Community unweighted means were better predicted than weighted means for almost all models. /
Main conclusions: Worldwide, trees require a large amount of energy (following latitude) to produce dense wood and seeds, while leaves with large surface to weight ratios are concentrated in temperate forests. However, patterns of functional composition within-biome differ from global patterns due to biome specificities such as the presence of conifers or unique combinations of climatic and soil properties. We recommend assessing the sensitivity of tree functional traits to environmental changes in their geographic context. Furthermore, at a given site, the distribution of tree functional traits appears to be driven more by species presence than species abundance
- âŠ