16 research outputs found
On boundary conditions for spin diffusion equations with Rashba spin-orbit interaction
We reexamine the boundary conditions of spin diffusion equations for dirty
semiconductor heterostructures with weak linear Rashba spin-orbit interaction.
Doing so, we focus on the influence of tangent derivatives of the particle
density at the boundary on the magnetization. Such derivatives are associated
with a spin accumulation in the presence of a density gradient. We show that
the tangent derivatives enter the boundary conditions and argue that the
spin-Hall effect is absent in such systems because of this fact.Comment: 7 page
Theory of spin-Hall transport of heavy holes in semiconductor quantum wells
Based on a proper definition of the spin current, we investigate the
spin-Hall effect of heavy holes in narrow quantum wells in the presence of
Rashba spin-orbit coupling by using a spin-density matrix approach. In contrast
to previous results obtained on the basis of the conventional definition of the
spin current, we arrive at the conclusion that an electric-field-induced
steady-state spin-Hall current does not exist in both, pure and disordered
infinite samples. Only an ac field can induce a spin-Hall effect in such
systems.Comment: 6 pages, submitted to J. Phys.: Condens. Matte
On dispersive energy transport and relaxation in the hopping regime
A new method for investigating relaxation phenomena for charge carriers
hopping between localized tail states has been developed. It allows us to
consider both charge and energy {\it dispersive} transport. The method is based
on the idea of quasi-elasticity: the typical energy loss during a hop is much
less than all other characteristic energies. We have investigated two models
with different density of states energy dependencies with our method. In
general, we have found that the motion of a packet in energy space is affected
by two competing tendencies. First, there is a packet broadening, i.e. the
dispersive energy transport. Second, there is a narrowing of the packet, if the
density of states is depleting with decreasing energy. It is the interplay of
these two tendencies that determines the overall evolution. If the density of
states is constant, only broadening exists. In this case a packet in energy
space evolves into Gaussian one, moving with constant drift velocity and mean
square deviation increasing linearly in time. If the density of states depletes
exponentially with decreasing energy, the motion of the packet tremendously
slows down with time. For large times the mean square deviation of the packet
becomes constant, so that the motion of the packet is ``soliton-like''.Comment: 26 pages, RevTeX, 10 EPS figures, submitted to Phys. Rev.
On the structure of the energy distribution function in the hopping regime
The impact of the dispersion of the transport coefficients on the structure
of the energy distribution function for charge carriers far from equilibrium
has been investigated in effective-medium approximation for model densities of
states. The investigations show that two regimes can be observed in energy
relaxation processes. Below a characteristic temperature the structure of the
energy distribution function is determined by the dispersion of the transport
coefficients. Thermal energy diffusion is irrelevant in this regime. Above the
characteristic temperature the structure of the energy distribution function is
determined by energy diffusion. The characteristic temperature depends on the
degree of disorder and increases with increasing disorder. Explicit expressions
for the energy distribution function in both regimes are derived for a constant
and an exponential density of states.Comment: 16 page
Spin Transport in Two Dimensional Hopping Systems
A two dimensional hopping system with Rashba spin-orbit interaction is
considered. Our main interest is concerned with the evolution of the spin
degree of freedom of the electrons. We derive the rate equations governing the
evolution of the charge density and spin polarization of this system in the
Markovian limit in one-particle approximation. If only two-site hopping events
are taken into account, the evolution of the charge density and of the spin
polarization is found to be decoupled. A critical electric field is found,
above which oscillations are superimposed on the temporal decay of the total
polarization. A coupling between charge density and spin polarization occurs on
the level of three-site hopping events. The coupling terms are identified as
the anomalous Hall effect and the recently proposed spin Hall effect. Thus, an
unpolarized charge current through a sheet of finite width leads to a
transversal spin accumulation in our model system.Comment: 15 pages, 3 figure