11 research outputs found

    Sound Propagation in Nematic Fermi Liquid

    Full text link
    We study the longitudinal sound propagation in the electronic nematic Fermi liquid where the Fermi surface is distorted due to the spontaneously broken rotational symmetry. The behavior of the sound wave in the nematic ordered state is dramatically different from that in the isotropic Fermi liquid. The collective modes associated with the fluctuations of the Fermi surface distortion in the nematic Fermi liquid leads to the strong and anisotropic damping of the sound wave. The relevance of the nematic Fermi liquid in doped Mott insulator is discussed.Comment: 4 pages, no figur

    Heat transport of electron-doped Cobaltates

    Full text link
    Within the t-J model, the heat transport of electron-doped cobaltates is studied based on the fermion-spin theory. It is shown that the temperature dependent thermal conductivity is characterized by the low temperature peak located at a finite temperature. The thermal conductivity increases monotonously with increasing temperature at low temperatures T << 0.1JJ, and then decreases with increasing temperature for higher temperatures T >> 0.1JJ, in qualitative agreement with experimental result observed from Nax_{x}CoO2_{2} .Comment: 4 pages, 1 fig, corrected typos, accepted for publication in Commun. Theor. Phy

    Strong damping of phononic heat current by magnetic excitations in SrCu_2(BO_3)_2

    Full text link
    Measurements of the thermal conductivity as a function of temperature and magnetic field in the 2D dimer spin system SrCu2_2(BO3_3)2_2 are presented. In zero magnetic field the thermal conductivity along and perpendicular to the magnetic planes shows a pronounced double-peak structure as a function of temperature. The low-temperature maximum is drastically suppressed with increasing magnetic field. Our quantitative analysis reveals that the heat current is due to phonons and that the double-peak structure arises from pronounced resonant scattering of phonons by magnetic excitations.Comment: a bit more than 4 pages, 2 figures included; minor changes to improve the clarity of the presentatio

    Thermal conductivity of lightly Sr- and Zn-doped La2_2CuO4_4 single crystals

    Full text link
    Both ab-plane and c-axis thermal conductivities (κab\kappa_{ab} and κc\kappa_c) of lightly doped La2x_{2-x}Srx_xCuO4_4 and La2_2Cu1y_{1-y}Zny_yO4_4 single crystals (xx or yy = 0 -- 0.04) are measured from 2 to 300 K. It is found that the low-temperature phonon peak (at 20 -- 25 K) is significantly suppressed upon Sr or Zn doping even at very low doping, though its precise doping dependences show interesting differences between the Sr and Zn dopants, or between the abab plane and the c axis. Most notably, the phonon peak in κc\kappa_c decreases much more quickly with Sr doping than with Zn doping, while the phonon-peak suppression in κab\kappa_{ab} shows an opposite trend. It is discussed that the scattering of phonons by stripes is playing an important role in the damping of the phonon heat transport in lightly doped LSCO, in which static spin stripes has been observed by neutron scattering. We also show κab\kappa_{ab} and κc\kappa_c data of La1.28_{1.28}Nd0.6_{0.6}Sr0.12_{0.12}CuO4_4 and La1.68_{1.68}Eu0.2_{0.2}Sr0.12_{0.12}CuO4_4 single crystals to compare with the data of the lightly doped crystals for the discussion of the role of stripes. At high temperature, the magnon peak (i.e., the peak caused by the spin heat transport near the N\'{e}el temperature) in κab(T)\kappa_{ab}(T) is found to be rather robust against Zn doping, while it completely disappears with only 1% of Sr doping.Comment: 7 pages, 4 figures, accepted for publication in Phys. Rev.

    Phonon thermal conductivity in doped La2CuO4\rm\bf La_2CuO_4: Relevant scattering mechanisms

    Full text link
    Results of in-plane and out-of-plane thermal conductivity measurements on La1.8xEu0.2SrxCuO4\rm La_{1.8-x}Eu_{0.2}Sr_xCuO_4 (0x0.20\leq x\leq0.2) single crystals are presented. The most characteristic features of the temperature dependence are a pronounced phonon peak at low temperatures and a steplike anomaly at TLTT_{LT}, i.e., at the transition to the low temperature tetragonal phase (LTT-phase), which gradually decrease with increasing Sr-content. Comparison of these findings with the thermal conductivity of La2xSrxCuO4\rm La_{2-x}Sr_xCuO_4 and La2NiO4\rm La_2NiO_4 clearly reveals that in La2xSrxCuO4\rm La_{2-x}Sr_xCuO_4 the most effective mechanism for phonon scattering is impurity-scattering (dopants), as well as scattering by soft phonons that are associated with the lattice instability in the low temperature orthorhombic phase (LTO-phase). There is no evidence that stripe correlations play a major role in suppressing the phonon peak in the thermal conductivity of La2xSrxCuO4\rm La_{2-x}Sr_xCuO_4.Comment: 7 pages, 4 figure

    Lattice anisotropy as microscopic origin of static stripes in cuprates

    Full text link
    Structural distortions in cuprate materials offer a microscopic origin for anisotropies in electron transport in the basal plane. Using a real-space Hartree-Fock approach, we consider the ground states of the anisotropic Hubbard (t_x \ne t_y) and t-J (t_x \ne t_y, J_x \ne J_y) models. Symmetrical but inhomogeneous (``polaronic'') charge structures in the isotropic models are altered even by rather small anisotropies to one-dimensional, stripe-like features. We find two distinct types of stripe, namely uniformly filled, antiphase domain walls and non-uniform, half-filled, in-phase ones. We characterize their properties, energies and dependence on the model parameters, including filling and anisotropy in t (and J). We discuss the connections among these results, other theoretical studies and experimental observation.Comment: 18 pages, 16 figures, 8 table

    Phase Separation Models for Cuprate Stripe Arrays

    Full text link
    An electronic phase separation model provides a natural explanation for a large variety of experimental results in the cuprates, including evidence for both stripes and larger domains, and a termination of the phase separation in the slightly overdoped regime, when the average hole density equals that on the charged stripes. Several models are presented for charged stripes, showing how density waves, superconductivity, and strong correlations compete with quantum size effects (QSEs) in narrow stripes. The energy bands associated with the charged stripes develop in the middle of the Mott gap, and the splitting of these bands can be understood by considering the QSE on a single ladder.Comment: significant revisions: includes island phase, 16 eps figures, revte

    Flux Phase as a Dynamic Jahn-Teller Phase: Berryonic Matter in the Cuprates?

    Full text link
    There is considerable evidence for some form of charge ordering on the hole-doped stripes in the cuprates, mainly associated with the low-temperature tetragonal phase, but with some evidence for either charge density waves or a flux phase, which is a form of dynamic charge-density wave. These three states form a pseudospin triplet, demonstrating a close connection with the E X e dynamic Jahn-Teller effect, suggesting that the cuprates constitute a form of Berryonic matter. This in turn suggests a new model for the dynamic Jahn-Teller effect as a form of flux phase. A simple model of the Cu-O bond stretching phonons allows an estimate of electron-phonon coupling for these modes, explaining why the half breathing mode softens so much more than the full oxygen breathing mode. The anomalous properties of O2O^{2-} provide a coupling (correlated hopping) which acts to stabilize density wave phases.Comment: Major Revisions: includes comparisons with specific cuprate phonon modes, 16 eps figures, revte

    How to detect fluctuating order in the high-temperature superconductors

    Full text link
    We discuss fluctuating order in a quantum disordered phase proximate to a quantum critical point, with particular emphasis on fluctuating stripe order. Optimal strategies for extracting information concerning such local order from experiments are derived with emphasis on neutron scattering and scanning tunneling microscopy. These ideas are tested by application to two model systems - the exactly solvable one dimensional electron gas with an impurity, and a weakly-interacting 2D electron gas. We extensively review experiments on the cuprate high-temperature superconductors which can be analyzed using these strategies. We adduce evidence that stripe correlations are widespread in the cuprates. Finally, we compare and contrast the advantages of two limiting perspectives on the high-temperature superconductor: weak coupling, in which correlation effects are treated as a perturbation on an underlying metallic (although renormalized) Fermi liquid state, and strong coupling, in which the magnetism is associated with well defined localized spins, and stripes are viewed as a form of micro-phase separation. We present quantitative indicators that the latter view better accounts for the observed stripe phenomena in the cuprates.Comment: 43 pages, 11 figures, submitted to RMP; extensively revised and greatly improved text; one new figure, one new section, two new appendices and more reference

    Stripe correlations of spins and holes and phonon heat transport in doped

    No full text
    We present experimental evidence for a dramatic suppression of the phononic thermal conductivity of rare-earth– and Sr–doped La2CuO4\rm La_2CuO_4. Remarkably, this suppression correlates with the occurrence of superconductivity. Conventional models for the phonon heat transport fail to explain these results. In contrast, a straightforward explanation is possible in terms of static and dynamic stripe correlations of holes and spins
    corecore