'Vasyl Stefanyk Precarpathian National University'
Publication date
01/01/2013
Field of study
For multiple Dirichlet series of the form F(s)=ββ₯nβ₯=0ββa(n)βexp{(Ξ»(n)β,s)} we establish relations between domains of the convergence Gcβ, absolutely convergence Gaβ and of the domain of the existence of the maximal term GΞΌβ of the series as follows: Ξ³GcββGaβ+Ξ΄0βe1β,Β Ξ³GΞΌββGaβ+Ξ΄0βe1β, where e1β=(1,...,1)βRp,Ξ΄0ββR, by condition \liminf\limits_{\|n\|\to\infty}\frac{(\gamma-1)\ln\,|a_{(n)}|+\delta_0\|\lambda_{(n)}\|}{\ln\|n\|}>p;Ξ³GcββGaβ+Ξ΄;Ξ³GΞΌββGaβ+Ξ΄, where Ξ΄βRp, by condition $\liminf\limits_{\|n\|\to\infty}\frac{(\gamma-1)\ln\,|a_{(n)}|+(\delta,\lambda_{(n)})}{\ln\,n_1+...+\ln\,n_p}>1.
'Vasyl Stefanyk Precarpathian National University'
Publication date
01/06/2009
Field of study
For absolutely convergent in the half-plane zcolonmRe,z<0 Dirichlet series F(z)=sumlimitsn=0+inftyβanβezlambdanβ, where 0leqlambdanβuparrow+infty(0leqnuparrow+infty), we establish conditions on the coefficients of itsNewton majorant, sufficient for the relation F(x+iy)=(1+o(1))au(x)βe(x+iy)lambdau(x)β to hold asxoβ0 outside some set E of zero logarithmic density in thepoint 0, uniformly by yinmathbbR