22 research outputs found

    Direct analogues of Wiman's inequality for analytic functions in the unit disc

    No full text
    Let f(z)=βˆ‘n=0∞anznf(z)=\sum_{n=0}^{\infty} a_n z^n be an analytic function on \{z:|z|<1\},\ h\in H and Ξ©f(r)=βˆ‘n=0∞∣an∣rn\Omega_f(r)= \sum_{n=0}^{\infty} |a_n| r^n. IfΞ²fh=lim inf⁑rβ†’1ln⁑ln⁑Ωf(r)ln⁑h(r)=+∞,\beta_{fh}=\liminf\limits_{r\to1}\frac{\ln\ln\Omega_f(r)}{\ln h(r)}=+\infty,then Wiman's inequality Mf(r)≀μf(r)ln⁑1/2+δμf(r)M_f(r)\leq \mu_f(r) \ln^{1/2+\delta}\mu_f(r) is true for all r∈(r0,1)\E(Ξ΄)r\in (r_0, 1)\backslash E(\delta), where $h-\mbox{meas}\ E&lt;+\infty.

    On the abscises of the convergence of multiple Dirichlet series

    No full text
    For multiple Dirichlet series of the form F(s)=βˆ‘βˆ₯nβˆ₯=0∞a(n)exp⁑{(Ξ»(n),s)}F(s)=\sum_{\|n\|=0}^\infty a_{(n)}\exp\{(\lambda_{(n)},s)\} we establish relations between domains of the convergence GcG_c, absolutely convergence GaG_a and of the domain of the existence of the maximal term GΞΌG_{\mu} of the series as follows: Ξ³GcβŠ‚Ga+Ξ΄0e1,Β Ξ³GΞΌβŠ‚Ga+Ξ΄0e1,\gamma G_{c}\subset G_{a}+\delta_0 e_{1},\ \gamma G_{\mu}\subset G_{a}+\delta_0 e_{1}, where e1=(1,...,1)∈Rp,β€…β€Šβ€…β€ŠΞ΄0∈R,e_{1}=(1,...,1)\in \mathbb{R}^p,\;\; \delta_0\in \mathbb{R}, by condition \liminf\limits_{\|n\|\to\infty}\frac{(\gamma-1)\ln\,|a_{(n)}|+\delta_0\|\lambda_{(n)}\|}{\ln\|n\|}>p; Ξ³GcβŠ‚Ga+Ξ΄;β€…β€Šβ€…β€ŠΞ³GΞΌβŠ‚Ga+Ξ΄,\gamma G_c\subset G_a+\delta; \;\; \gamma G_{\mu}\subset G_a+\delta, where δ∈Rp,\delta\in\mathbb{R}^{p}, by condition $\liminf\limits_{\|n\|\to\infty}\frac{(\gamma-1)\ln\,|a_{(n)}|+(\delta,\lambda_{(n)})}{\ln\,n_1+...+\ln\,n_p}&gt;1.

    On the equivalence of the sum and the maximal term of the Dirichlet series absolutely convergent in the half-plane

    No full text
    For absolutely convergent in the half-plane zcolonmRe,z<0{zcolon {mRe,}z<0} Dirichlet series F(z)=sumlimitsn=0+inftyanezlambdan,F(z)=sumlimits_{n=0}^{+infty}a_ne^{zlambda_n}, where 0leqlambdanuparrow+infty(0leqnuparrow+infty),0leqlambda_nuparrow +infty (0leq nuparrow+infty), we establish conditions on the coefficients of itsNewton majorant, sufficient for the relation F(x+iy)=(1+o(1))au(x)e(x+iy)lambdau(x)F(x+iy)=(1+o(1))a_{u(x)}e^{(x+iy)lambda_{u(x)}} to hold asxoβˆ’0xo -0 outside some set EE of zero logarithmic density in thepoint 0,0, uniformly by yinmathbbRyin{mathbb R}
    corecore