29 research outputs found

    Direct evidence of a zigzag spin chain structure in the honeycomb lattice: A neutron and x-ray diffraction investigation on single crystal Na2IrO3\rm Na_2IrO_3

    Full text link
    We have combined single crystal neutron and x-ray diffractions to investigate the magnetic and crystal structures of the honeycomb lattice Na2IrO3\rm Na_2IrO_3. The system orders magnetically below 18.1(2)18.1(2) K with Ir4+^{4+} ions forming zigzag spin chains within the layered honeycomb network with ordered moment of 0.22(1)μB\rm 0.22(1) \mu_B/Ir site. Such a configuration sharply contrasts the N{\'{e}}el or stripe states proposed in the Kitaev-Heisenberg model. The structure refinement reveals that the Ir atoms form nearly ideal 2D honeycomb lattice while the IrO6\rm IrO_6 octahedra experience a trigonal distortion that is critical to the ground state. The results of this study provide much-needed experimental insights into the magnetic and crystal structure crucial to the understanding of the exotic magnetic order and possible topological characteristics in the 5dd-electron based honeycomb lattice.Comment: Revised version as that to appear in PR

    Tuning electronic structures via epitaxial strain in Sr2IrO4 thin films

    Get PDF
    We have synthesized epitaxial Sr2IrO4 thin-films on various substrates and studied their electronic structures as a function of lattice-strains. Under tensile (compressive) strains, increased (decreased) Ir-O-Ir bond-angles are expected to result in increased (decreased) electronic bandwidths. However, we have observed that the two optical absorption peaks near 0.5 eV and 1.0 eV are shifted to higher (lower) energies under tensile (compressive) strains, indicating that the electronic-correlation energy is also affected by in-plane lattice-strains. The effective tuning of electronic structures under lattice-modification provides an important insight into the physics driven by the coexisting strong spin-orbit coupling and electronic correlation.Comment: 9 pages, 5 figures, 1 tabl
    corecore