49 research outputs found

    CGIAR modeling approaches for resource-constrained scenarios: I. Accelerating crop breeding for a changing climate.

    Get PDF
    Crop improvement efforts aiming at increasing crop production (quantity, quality) and adapting to climate change have been subject of active research over the past years. But, the question remains 'to what extent can breeding gains be achieved under a changing climate, at a pace sufficient to usefully contribute to climate adaptation, mitigation and food security?'. Here, we address this question by critically reviewing how model-based approaches can be used to assist breeding activities, with particular focus on all CGIAR (formerly the Consultative Group on International Agricultural Research but now known simply as CGIAR) breeding programs. Crop modeling can underpin breeding efforts in many different ways, including assessing genotypic adaptability and stability, characterizing and identifying target breeding environments, identifying tradeoffs among traits for such environments, and making predictions of the likely breeding value of the genotypes. Crop modeling science within the CGIAR has contributed to all of these. However, much progress remains to be done if modeling is to effectively contribute to more targeted and impactful breeding programs under changing climates. In a period in which CGIAR breeding programs are undergoing a major modernization process, crop modelers will need to be part of crop improvement teams, with a common understanding of breeding pipelines and model capabilities and limitations, and common data standards and protocols, to ensure they follow and deliver according to clearly defined breeding products. This will, in turn, enable more rapid and better-targeted crop modeling activities, thus directly contributing to accelerated and more impactful breeding efforts.Online Version of Record before inclusion in an issue

    A peculiar class of debris disks from Herschel/DUNES - A steep fall off in the far infrared

    Get PDF
    Aims. We present photometric data of debris disks around HIP 103389 (HD 199260), HIP 107350 (HN Peg, HD206860), and HIP 114948 (HD 219482), obtained in the context of our Herschel Open Time Key Program DUNES (DUst around NEarby Stars). Methods. We used Herschel/PACS to detect the thermal emission of the three debris disks with a 3 sigma sensitivity of a few mJy at 100 um and 160 um. In addition, we obtained Herschel/PACS photometric data at 70 um for HIP 103389. Two different approaches are applied to reduce the Herschel data to investigate the impact of data reduction on the photometry. We fit analytical models to the available spectral energy distribution (SED) data. Results. The SEDs of the three disks potentially exhibit an unusually steep decrease at wavelengths > 70 um. We investigate the significance of the peculiar shape of these SEDs and the impact on models of the disks provided it is real. Our modeling reveals that such a steep decrease of the SEDs in the long wavelength regime is inconsistent with a power-law exponent of the grain size distribution -3.5 expected from a standard equilibrium collisional cascade. In contrast, a very distinct range of grain sizes is implied to dominate the thermal emission of such disks. However, we demonstrate that the understanding of the data of faint sources obtained with Herschel is still incomplete and that the significance of our results depends on the version of the data reduction pipeline used. Conclusions. A new mechanism to produce the dust in the presented debris disks, deviations from the conditions required for a standard equilibrium collisional cascade (grain size exponent of -3.5), and/or significantly different dust properties would be necessary to explain the potentially steep SED shape of the three debris disks presented. (abridged)Comment: 14 pages, 4 figures, accepted by A&

    Principal variable selection to explain grain yield variation in winter wheat from features extracted from UAV imagery

    Get PDF
    Background: Automated phenotyping technologies are continually advancing the breeding process. However, collecting various secondary traits throughout the growing season and processing massive amounts of data still take great efforts and time. Selecting a minimum number of secondary traits that have the maximum predictive power has the potential to reduce phenotyping efforts. The objective of this study was to select principal features extracted from UAV imagery and critical growth stages that contributed the most in explaining winter wheat grain yield. Five dates of multispectral images and seven dates of RGB images were collected by a UAV system during the spring growing season in 2018. Two classes of features (variables), totaling to 172 variables, were extracted for each plot from the vegetation index and plant height maps, including pixel statistics and dynamic growth rates. A parametric algorithm, LASSO regression (the least angle and shrinkage selection operator), and a non-parametric algorithm, random forest, were applied for variable selection. The regression coefficients estimated by LASSO and the permutation importance scores provided by random forest were used to determine the ten most important variables influencing grain yield from each algorithm. Results: Both selection algorithms assigned the highest importance score to the variables related with plant height around the grain filling stage. Some vegetation indices related variables were also selected by the algorithms mainly at earlier to mid growth stages and during the senescence. Compared with the yield prediction using all 172 variables derived from measured phenotypes, using the selected variables performed comparable or even better. We also noticed that the prediction accuracy on the adapted NE lines (r = 0.58–0.81) was higher than the other lines (r = 0.21–0.59) included in this study with different genetic backgrounds. Conclusions: With the ultra-high resolution plot imagery obtained by the UAS-based phenotyping we are now able to derive more features, such as the variation of plant height or vegetation indices within a plot other than just an averaged number, that are potentially very useful for the breeding purpose. However, too many features or variables can be derived in this way. The promising results from this study suggests that the selected set from those variables can have comparable prediction accuracies on the grain yield prediction than the full set of them but possibly resulting in a better allocation of efforts and resources on phenotypic data collection and processing

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Time to Switch to Second-line Antiretroviral Therapy in Children With Human Immunodeficiency Virus in Europe and Thailand.

    Get PDF
    Background: Data on durability of first-line antiretroviral therapy (ART) in children with human immunodeficiency virus (HIV) are limited. We assessed time to switch to second-line therapy in 16 European countries and Thailand. Methods: Children aged <18 years initiating combination ART (≄2 nucleoside reverse transcriptase inhibitors [NRTIs] plus nonnucleoside reverse transcriptase inhibitor [NNRTI] or boosted protease inhibitor [PI]) were included. Switch to second-line was defined as (i) change across drug class (PI to NNRTI or vice versa) or within PI class plus change of ≄1 NRTI; (ii) change from single to dual PI; or (iii) addition of a new drug class. Cumulative incidence of switch was calculated with death and loss to follow-up as competing risks. Results: Of 3668 children included, median age at ART initiation was 6.1 (interquartile range (IQR), 1.7-10.5) years. Initial regimens were 32% PI based, 34% nevirapine (NVP) based, and 33% efavirenz based. Median duration of follow-up was 5.4 (IQR, 2.9-8.3) years. Cumulative incidence of switch at 5 years was 21% (95% confidence interval, 20%-23%), with significant regional variations. Median time to switch was 30 (IQR, 16-58) months; two-thirds of switches were related to treatment failure. In multivariable analysis, older age, severe immunosuppression and higher viral load (VL) at ART start, and NVP-based initial regimens were associated with increased risk of switch. Conclusions: One in 5 children switched to a second-line regimen by 5 years of ART, with two-thirds failure related. Advanced HIV, older age, and NVP-based regimens were associated with increased risk of switch
    corecore