247 research outputs found
J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=39 and 62.4 GeV
We present measurements of the J/psi invariant yields in sqrt(s_NN)=39 and
62.4 GeV Au+Au collisions at forward rapidity (1.2<|y|<2.2). Invariant yields
are presented as a function of both collision centrality and transverse
momentum. Nuclear modifications are obtained for central relative to peripheral
Au+Au collisions (R_CP) and for various centrality selections in Au+Au relative
to scaled p+p cross sections obtained from other measurements (R_AA). The
observed suppression patterns at 39 and 62.4 GeV are quite similar to those
previously measured at 200 GeV. This similar suppression presents a challenge
to theoretical models that contain various competing mechanisms with different
energy dependencies, some of which cause suppression and others enhancement.Comment: 365 authors, 10 pages, 11 figures, 4 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Medium modification of jet fragmentation in Au+Au collisions at sqrt(s_NN)=200 GeV measured in direct photon-hadron correlations
The jet fragmentation function is measured with direct photon-hadron
correlations in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The p_T of the
photon is an excellent approximation to the initial p_T of the jet and the
ratio z_T=p_T^h/p_T^\gamma is used as a proxy for the jet fragmentation
function. A statistical subtraction is used to extract the direct photon-hadron
yields in Au+Au collisions while a photon isolation cut is applied in p+p. I_
AA, the ratio of jet fragment yield in Au+Au to that in p+p, indicates
modification of the jet fragmentation function. Suppression, most likely due to
energy loss in the medium, is seen at high z_T. The fragment yield at low z_T
is enhanced at large angles. Such a trend is expected from redistribution of
the lost energy into increased production of low-momentum particles.Comment: 562 authors, 70 insitutions, 8 pages, and 3 figures. Submitted to
Phys. Rev. Lett. v2 has minor changes to improve clarity. Plain text data
tables for the points plotted in figures for this and previous PHENIX
publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
L\'evy-stable two-pion Bose-Einstein correlations in GeV AuAu collisions
We present a detailed measurement of charged two-pion correlation functions
in 0%-30% centrality GeV AuAu collisions by the
PHENIX experiment at the Relativistic Heavy Ion Collider. The data are well
described by Bose-Einstein correlation functions stemming from L\'evy-stable
source distributions. Using a fine transverse momentum binning, we extract the
correlation strength parameter , the L\'evy index of stability
and the L\'evy length scale parameter as a function of average
transverse mass of the pair . We find that the positively and the
negatively charged pion pairs yield consistent results, and their correlation
functions are represented, within uncertainties, by the same L\'evy-stable
source functions. The measurements indicate a decrease of the
strength of the correlations at low . The L\'evy length scale parameter
decreases with increasing , following a hydrodynamically
predicted type of scaling behavior. The values of the L\'evy index of stability
are found to be significantly lower than the Gaussian case of
, but also significantly larger than the conjectured value that may
characterize the critical point of a second-order quark-hadron phase
transition.Comment: 448 authors, 25 pages, 11 figures, 4 tables, 2010 data. v2 is version
accepted for publication in Phys. Rev. C. Plain text data tables for the
points plotted in figures for this and previous PHENIX publications are (or
will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Measurements of elliptic and triangular flow in high-multiplicity HeAu collisions at GeV
We present the first measurement of elliptic () and triangular ()
flow in high-multiplicity HeAu collisions at
GeV. Two-particle correlations, where the particles have a large separation in
pseudorapidity, are compared in HeAu and in collisions and
indicate that collective effects dominate the second and third Fourier
components for the correlations observed in the HeAu system. The
collective behavior is quantified in terms of elliptic and triangular
anisotropy coefficients measured with respect to their corresponding
event planes. The values are comparable to those previously measured in
Au collisions at the same nucleon-nucleon center-of-mass energy.
Comparison with various theoretical predictions are made, including to models
where the hot spots created by the impact of the three He nucleons on the
Au nucleus expand hydrodynamically to generate the triangular flow. The
agreement of these models with data may indicate the formation of low-viscosity
quark-gluon plasma even in these small collision systems.Comment: 630 authors, 9 pages, 4 figures, 2 tables. v2 is the version accepted
for publication by Physical Review Letters. Plain text data tables for the
points plotted in figures for this and previous PHENIX publications are (or
will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Double Spin Asymmetry of Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s)=200 GeV
We report on the first measurement of double-spin asymmetry, A_LL, of
electrons from the decays of hadrons containing heavy flavor in longitudinally
polarized p+p collisions at sqrt(s)=200 GeV for p_T= 0.5 to 3.0 GeV/c. The
asymmetry was measured at mid-rapidity (|eta|<0.35) with the PHENIX detector at
the Relativistic Heavy Ion Collider. The measured asymmetries are consistent
with zero within the statistical errors. We obtained a constraint for the
polarized gluon distribution in the proton of |Delta g/g(log{_10}x=
-1.6^+0.5_-0.4, {mu}=m_T^c)|^2 < 0.033 (1 sigma), based on a leading-order
perturbative-quantum-chromodynamics model, using the measured asymmetry.Comment: 385 authors, 17 pages, 15 figures, 5 tables. Submitted to Phys. Rev.
D. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Upsilon (1S+2S+3S) production in d+Au and p+p collisions at sqrt(s_NN)=200 GeV and cold-nuclear matter effects
The three Upsilon states, Upsilon(1S+2S+3S), are measured in d+Au and p+p
collisions at sqrt(s_NN)=200 GeV and rapidities 1.2<|y|<2.2 by the PHENIX
experiment at the Relativistic Heavy-Ion Collider. Cross sections for the
inclusive Upsilon(1S+2S+3S) production are obtained. The inclusive yields per
binary collision for d+Au collisions relative to those in p+p collisions
(R_dAu) are found to be 0.62 +/- 0.26 (stat) +/- 0.13 (syst) in the gold-going
direction and 0.91 +/- 0.33 (stat) +/- 0.16 (syst) in the deuteron-going
direction. The measured results are compared to a nuclear-shadowing model,
EPS09 [JHEP 04, 065 (2009)], combined with a final-state breakup cross section,
sigma_br, and compared to lower energy p+A results. We also compare the results
to the PHENIX J/psi results [Phys. Rev. Lett. 107, 142301 (2011)]. The rapidity
dependence of the observed Upsilon suppression is consistent with lower energy
p+A measurements.Comment: 495 authors, 11 pages, 9 figures, 5 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Cross Section and Transverse Single-Spin Asymmetry of Mesons in Collisions at GeV at Forward Rapidity
We present a measurement of the cross section and transverse single-spin
asymmetry () for mesons at large pseudorapidity from
~GeV collisions. The measured cross section for
~GeV/ and is well described by a
next-to-leading-order perturbative-quantum-chromodynamics calculation. The
asymmetries have been measured as a function of Feynman- () from
, as well as transverse momentum () from
~GeV/. The asymmetry averaged over positive is
. The results are consistent with prior
transverse single-spin measurements of forward and mesons at
various energies in overlapping ranges. Comparison of different particle
species can help to determine the origin of the large observed asymmetries in
collisions.Comment: 484 authors, 13 pages, 11 figures, 4 tables, 2008 data. v2 is version
accepted by Phys. Rev. D. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (or will be)publicly
available at http://www.phenix.bnl.gov/papers.htm
- …