71 research outputs found
Towards a genetic AIDS vaccine
We discuss a recent Nature Medicine publication by Philip Johnson and co-workers (Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. Nat. Med. 2009, 15: 901-906) in which an effective HIV-1 vaccine was designed that is based on gene therapy. The introduced gene produces an antibody-like immunoadhesin in the blood that neutralizes the virus
Expression of Multiple Artificial MicroRNAs from a Chicken miRNA126-Based Lentiviral Vector
Background: The use of RNAi in both basic and translational research often requires expression of multiple siRNAs from the
same vector.
Methods/Principal Findings: We have developed a novel chicken miR126-based artificial miRNA expression system that can
express one, two or three miRNAs from a single cassette in a lentiviral vector. We show that each of the miRNAs expressed
from the same lentiviral vector is capable of potent inhibition of reporter gene expression in transient transfection and
stable integration assays in chicken fibroblast DF-1 cells. Transduction of Vero cells with lentivirus expressing two or three
different anti-influenza miRNAs leads to inhibition of influenza virus production. In addition, the chicken miR126-based
expression system effectively inhibits reporter gene expression in human, monkey, dog and mouse cells. These results
demonstrate that the flanking regions of a single primary miRNA can support processing of three different stem-loops in a
single vector.
Conclusions/Significance: This novel design expands the means to express multiple miRNAs from the same vector for
potent and effective silencing of target genes and influenza virus.National Institutes of Health (U.S.) (Grant R01AI056267)Cobb-Vantress, inc
An RNAi in silico approach to find an optimal shRNA cocktail against HIV-1
<p>Abstract</p> <p>Background</p> <p>HIV-1 can be inhibited by RNA interference <it>in vitro </it>through the expression of short hairpin RNAs (shRNAs) that target conserved genome sequences. <it>In silico </it>shRNA design for HIV has lacked a detailed study of virus variability constituting a possible breaking point in a clinical setting. We designed shRNAs against HIV-1 considering the variability observed in naïve and drug-resistant isolates available at public databases.</p> <p>Methods</p> <p>A Bioperl-based algorithm was developed to automatically scan multiple sequence alignments of HIV, while evaluating the possibility of identifying dominant and subdominant viral variants that could be used as efficient silencing molecules. Student t-test and Bonferroni Dunn correction test were used to assess statistical significance of our findings.</p> <p>Results</p> <p>Our <it>in silico </it>approach identified the most common viral variants within highly conserved genome regions, with a calculated free energy of ≥ -6.6 kcal/mol. This is crucial for strand loading to RISC complex and for a predicted silencing efficiency score, which could be used in combination for achieving over 90% silencing. Resistant and naïve isolate variability revealed that the most frequent shRNA per region targets a maximum of 85% of viral sequences. Adding more divergent sequences maintained this percentage. Specific sequence features that have been found to be related with higher silencing efficiency were hardly accomplished in conserved regions, even when lower entropy values correlated with better scores. We identified a conserved region among most HIV-1 genomes, which meets as many sequence features for efficient silencing.</p> <p>Conclusions</p> <p>HIV-1 variability is an obstacle to achieving absolute silencing using shRNAs designed against a consensus sequence, mainly because there are many functional viral variants. Our shRNA cocktail could be truly effective at silencing dominant and subdominant naïve viral variants. Additionally, resistant isolates might be targeted under specific antiretroviral selective pressure, but in both cases these should be tested exhaustively prior to clinical use.</p
Inhibition of cervical cancer cell growth in vitro and in vivo with dual shRNAs
RNA interference (RNAi)-based gene silencing is widely used in laboratories for gene function studies and also holds a great promise for developing treatments for diseases. However, in vivo delivery of RNAi therapy remains a key issue. Lentiviral vectors have been employed for stable gene transfer and gene therapy and therefore are expected to deliver a stable and durable RNAi therapy. But this does not seem to be true in some disease models. Here, we showed that lentivirus delivered short-hairpin RNA (shRNA) against human papillomavirus (HPV) E6/E7 oncogenes were effective for only 2 weeks in a cervical cancer model. However, using this vector to carry two copies of the same shRNA or two shRNAs targeting at two different but closely related genes (HPV E6 and vascular endothelial growth factor) was more effective at silencing the gene targets and inhibiting cell or even tumor growth than their single shRNA counterparts. The cancer cells treated with dual shRNA were also more sensitive to chemotherapeutic drugs than single shRNA-treated cells. These results suggest that a multi-shRNA strategy may be a more attractive approach for developing an RNAi therapy for this cancer. Cancer Gene Therapy (2011) 18, 219-227; doi: 10.1038/cgt.2010.72; published online 19 November 201
In silico modeling indicates the development of HIV-1 resistance to multiple shRNA gene therapy differs to standard antiretroviral therapy
<p>Abstract</p> <p>Background</p> <p>Gene therapy has the potential to counter problems that still hamper standard HIV antiretroviral therapy, such as toxicity, patient adherence and the development of resistance. RNA interference can suppress HIV replication as a gene therapeutic via expressed short hairpin RNAs (shRNAs). It is now clear that multiple shRNAs will likely be required to suppress infection and prevent the emergence of resistant virus.</p> <p>Results</p> <p>We have developed the first biologically relevant stochastic model in which multiple shRNAs are introduced into CD34+ hematopoietic stem cells. This model has been used to track the production of gene-containing CD4+ T cells, the degree of HIV infection, and the development of HIV resistance in lymphoid tissue for 13 years. In this model, we found that at least four active shRNAs were required to suppress HIV infection/replication effectively and prevent the development of resistance. The inhibition of incoming virus was shown to be critical for effective treatment. The low potential for resistance development that we found is largely due to a pool of replicating wild-type HIV that is maintained in non-gene containing CD4+ T cells. This wild-type HIV effectively out-competes emerging viral strains, maintaining the viral <it>status quo</it>.</p> <p>Conclusions</p> <p>The presence of a group of cells that lack the gene therapeutic and is available for infection by wild-type virus appears to mitigate the development of resistance observed with systemic antiretroviral therapy.</p
Combined antiviral activity of interferon-α and RNA interference directed against hepatitis C without affecting vector delivery and gene silencing
The current standard interferon-alpha (IFN-α)-based therapy for chronic hepatitis C virus (HCV) infection is only effective in approximately half of the patients, prompting the need for alternative treatments. RNA interference (RNAi) represents novel approach to combat HCV by sequence-specific targeting of viral or host factors involved in infection. Monotherapy of RNAi, however, may lead to therapeutic resistance by mutational escape of the virus. Here, we proposed that combining lentiviral vector-mediated RNAi and IFN-α could be more effective and avoid therapeutic resistance. In this study, we found that IFN-α treatment did not interfere with RNAi-mediated gene silencing. RNAi and IFN-α act independently on HCV replication showing combined antiviral activity when used simultaneously or sequentially. Transduction of mouse hepatocytes in vivo and in vitro was not effected by IFN-α treatment. In conclusion, RNAi and IFN-α can be effectively combined without cross-interference and may represent a promising combinational strategy for the treatment of hepatitis C
Cassette deletion in multiple shRNA lentiviral vectors for HIV-1 and its impact on treatment success
- …