178 research outputs found
Generation of Mie Size Microdroplet Aerosols with Applications in Laser-Driven Fusion Experiments
We have developed a tunable source of Mie scale microdroplet aerosols that can be used for the generation of energetic ions. To demonstrate this potential, a terawatt Ti:Al2O3 laser focused to 2Ă1019âW/cm2 was used to irradiate heavy water (D2O) aerosols composed of micron-scale droplets. Energetic deuterium ions, which were generated in the laser-droplet interaction, produced deuterium-deuterium fusion with approximately 2Ă103 fusion neutrons measured per joule of incident laser energy
Functional Analysis of Alleged NOGGIN Mutation G92E Disproves Its Pathogenic Relevance
We identified an amino acid change (p.G92E) in the Bone Morphogenetic Protein antagonist NOGGIN in a 22-month-old boy who presented with a unilateral brachydactyly type B phenotype. Brachydactyly type B is a skeletal malformation that has been associated with increased Bone Morphogenetic Protein pathway activation in other patients. Previously, the amino acid change p.G92E in NOGGIN was described as causing fibrodysplasia ossificans progressiva, a rare genetic disorder characterized by limb malformations and progressive heterotopic bone formation in soft tissues that, like Brachydactyly type B, is caused by increased activation of Bone Morphogenetic Protein signaling. To determine whether G92E-NOGGIN shows impaired antagonism that could lead to increased Bone Morphogenetic Protein signaling, we performed functional assays to evaluate inhibition of BMP signaling. Interestingly, wt-NOGGIN shows different inhibition efficacies towards various Bone Morphogenetic Proteins that are known to be essential in limb development. However, comparing the biological activity of G92E-NOGGIN with wt-NOGGIN, we observed that G92E-NOGGIN inhibits activation of bone morphogenetic protein signaling with equal efficiency as wt-NOGGIN, supporting that G92E-NOGGIN does not cause pathological effects. Genetic testing of the child's parents revealed the same amino acid change in the healthy father, further supporting that p.G92E is a neutral amino acid substitution in NOGGIN. We conclude that p.G92E represents a rare polymorphism of the NOGGIN gene - causing neither brachydactyly nor fibrodysplasia ossificans progressiva. This study highlights that a given genetic variation should not be considered pathogenic unless supported by functional analyses
Near-infrared photoluminescence enhancement in Ge/CdS and Ge/ZnS core/shell nanocrystals: Utilizing IV/II-VI semiconductor epitaxy
Ge nanocrystals have a large Bohr radius and a small, size-tunable band gap that may engender direct character via strain or doping. Colloidal Ge nanocrystals are particularly interesting in the development of near-infrared materials for applications in bioimaging, telecommunications and energy conversion. Epitaxial growth of a passivating shell is a common strategy employed in the synthesis of highly luminescent II-VI, III-V and IV-VI semiconductor quantum dots. Here, we use relatively unexplored IV/II-VI epitaxy as a way to enhance the photoluminescence and improve the optical stability of colloidal Ge nanocrystals. Selected on the basis of their relatively small lattice mismatch compared with crystalline Ge, we explore the growth of epitaxial CdS and ZnS shells using the successive ion layer adsorption and reaction method. Powder X-ray diffraction and electron microscopy techniques, including energy dispersive X-ray spectroscopy and selected area electron diffraction, clearly show the controllable growth of as many as 20 epitaxial monolayers of CdS atop Ge cores. In contrast, Ge etching and/or replacement by ZnS result in relatively small Ge/ZnS nanocrystals. The presence of an epitaxial II-VI shell greatly enhances the near-infrared photoluminescence and improves the photoluminescence stability of Ge. Ge/II-VI nanocrystals are reproducibly 1-3 orders of magnitude brighter than the brightest Ge cores. Ge/4.9CdS core/shells show the highest photoluminescence quantum yield and longest radiative recombination lifetime. Thiol ligand exchange easily results in near-infrared active, water-soluble Ge/II-VI nanocrystals. We expect this synthetic IV/II-VI epitaxial approach will lead to further studies into the optoelectronic behavior and practical applications of Si and Ge-based nanomaterials
Effect of correlation and dielectric confinement on 1S1/2(e)nS3/2(h)Excitons in CdTe/CdSe and CdSe/CdTe Type-II quantum dots
Controlled reduction of graphene oxide is an alternative and promising method to tune the electronic and optically active energy gap of this two-dimensional material in the energy range of the visible light spectrum. By means of ab initio calculations, based on hybrid density functional theory, that combine the HartreeâFock method with the generalized gradient approximation (GGA), we investigated the electronic, optical, and radiative recombination properties of partially reduced graphene oxide, modelled as small islands of pristine graphene formed in an infinite sheet of graphene oxide. We predict that tuning of optically active gaps, in the wide range from âŒ6.5 eV to âŒ0.25 eV, followed by the electron radiative transition times in the range from ns to ÎŒs, can be effected by controlling the level of oxidization
- âŠ