11 research outputs found

    STRAD Pseudokinases Regulate Axogenesis and LKB1 Stability

    Get PDF
    BACKGROUND: Neuronal polarization is an essential step of morphogenesis and connectivity in the developing brain. The serine/threonine kinase LKB1 is a key regulator of cell polarity, metabolism, tumorigenesis, and is required for axon formation. It is allosterically regulated by two related and evolutionarily conserved pseudokinases, STe20-Related ADapters (STRADs) α and β. The roles of STRADα and STRADβ in the developing nervous system are not fully defined, nor is it known whether they serve distinct functions. RESULTS: We find that STRADα is highly spliced and appears to be the primal STRAD paralog. We report that each STRAD is sufficient for axogenesis and promoting cell survival in the developing cortex. We also reveal a reciprocal protein-stabilizing relationship in vivo between LKB1 and STRADα, whereby STRADα specifically maintains LKB1 protein levels via cytoplasmic compartmentalization. CONCLUSIONS: We demonstrate a novel role for STRADβ in axogenesis and also show for the first time in vivo that STRADα, but not STRADβ, is responsible for LKB1 protein stability

    The Americana annual 1994

    No full text
    608 p. : il.; 26 cm

    Homologous plasminogen N-terminal and plasminogen-related gene A and B peptides - Characterization of cDNAs and recombinant fusion proteins

    No full text
    The cDNA corresponding to exons 2-4 of the processed human plasminogen (Pgn) gene, encoding the N-terminal peptide domain (NTP), has been cloned, expressed in Escherichia coli as a recombinant protein (r-NTP) containing a hexahistidine tag, and refolded to the native structure that contains two internal cystine bridges. RNA expression of the two Pgn-related genes, PRG A and PRG B, that potentially encode 9-kDa polypeptides having extensive similarity to the NTP has been investigated. Using RNA-based PCR with liver RNA as template,we demonstrate that PRG A encodes a detectable mRNA species. PRG A and PRG B have been found to be transcribed in the liver and yield virtually identical mRNAs. Neither of the PRGs are expressed in a variety of other normal tissues, as determined by Northern blot analysis. Factor-Xa digestion of the tagged r-NTP yields cleavage products which indicates that the expressed r-NTP domain of Pgn is endowed with a flexible conformation. Recombinant PRG B protein (r-PRG B) fused to a hexahistidine tag was purified and analyzed for structural integrity. Preliminary H-1-NMR spectroscopic data for r-NTP and r-PRG B indicate relatively fast amide H-1-H-2 exchange in (H2O)-H-2 and close conformational characteristics for the two homologous polypeptides. Far ultraviolet-CD spectra for r-NTP and r-PRG B at pH 7.0 indicate similar defined secondary structure content for both domains, with 13-17% alpha-helix and 24-27% antiparallel beta-sheet. The fact that two transcriptionally active genes encode almost identical polypeptides supports the hypothesis that the Pgn NTP, together with the putative polypeptides encoded by the PRGs, may serve an important function, such as controlling the conformation of Pgn and thus its susceptibility to tissue activators

    Potential of microneedle-assisted micro-particle delivery by gene guns: a review

    No full text
    This article was published in the journal Drug Delivery [© Informa Healthcare USA, Inc]. The definitive version is available at: http://dx.doi.org/10.3109/10717544.2013.864345Abstact Context: Gene guns have been used to deliver deoxyribonucleic acid (DNA) loaded micro-particle and breach the muscle tissue to target cells of interest to achieve gene transfection. Objective: This article aims to discuss the potential of microneedle (MN) assisted micro-particle delivery from gene guns, with a view to reducing tissue damage. Methods: Using a range of sources, the main gene guns for micro-particle delivery are reviewed along with the primary features of their technology, e.g. their design configurations, the material selection of the micro-particle, the driving gas type and pressure. Depending on the gene gun system, the achieved penetration depths in the skin are discussed as a function of the gas pressure, the type of the gene gun system and particle size, velocity and density. The concept of MN-assisted micro-particles delivery which consists of three stages (namely, acceleration, separation and decoration stage) is discussed. In this method, solid MNs are inserted into the skin to penetrate the epidermis/dermis layer and create holes for particle injection. Several designs of MN array are discussed and the insertion mechanism is explored, as it determines the feasibility of the MN-based system for particle transfer. Results: This review suggests that one of the problems of gene guns is that they need high operating pressures, which may result in direct or indirect tissue/cells damage. MNs seem to be a promising method which if combined with the gene guns may reduce the operating pressures for these devices and reduce tissue/cell damages. Conclusions: There is sufficient potential for MN-assisted particle develivery systems
    corecore