1,102 research outputs found
Theory of High-Force DNA Stretching and Overstretching
Single molecule experiments on single- and double stranded DNA have sparked a
renewed interest in the force-extension of polymers. The extensible Freely
Jointed Chain (FJC) model is frequently invoked to explain the observed
behavior of single-stranded DNA. We demonstrate that this model does not
satisfactorily describe recent high-force stretching data. We instead propose a
model (the Discrete Persistent Chain, or ``DPC'') that borrows features from
both the FJC and the Wormlike Chain, and show that it resembles the data more
closely. We find that most of the high-force behavior previously attributed to
stretch elasticity is really a feature of the corrected entropic elasticity;
the true stretch compliance of single-stranded DNA is several times smaller
than that found by previous authors. Next we elaborate our model to allow
coexistence of two conformational states of DNA, each with its own stretch and
bend elastic constants. Our model is computationally simple, and gives an
excellent fit through the entire overstretching transition of nicked,
double-stranded DNA. The fit gives the first values for the elastic constants
of the stretched state. In particular we find the effective bend stiffness for
DNA in this state to be about 10 nm*kbt, a value quite different from either
B-form or single-stranded DNAComment: 33 pages, 11 figures. High-quality figures available upon reques
Modulational instability in periodic quadratic nonlinear materials
We investigate the modulational instability of plane waves in quadratic
nonlinear materials with linear and nonlinear quasi-phase-matching gratings.
Exact Floquet calculations, confirmed by numerical simulations, show that the
periodicity can drastically alter the gain spectrum but never completely
removes the instability. The low-frequency part of the gain spectrum is
accurately predicted by an averaged theory and disappears for certain gratings.
The high-frequency part is related to the inherent gain of the homogeneous
non-phase-matched material and is a consistent spectral feature.Comment: 4 pages, 7 figures corrected minor misprint
Complete Set of Polarization Transfer Observables for the Reaction at 296 MeV and 0
A complete set of polarization transfer observables has been measured for the
reaction at and . The total spin transfer and the observable
deduced from the measured polarization transfer observables indicate that
the spin--dipole resonance at has greater
strength than strength, which is consistent with recent experimental and
theoretical studies. The results also indicate a predominance of the spin-flip
and unnatural-parity transition strength in the continuum. The exchange tensor
interaction at a large momentum transfer of is
discussed.Comment: 4 pages, 4 figure
Parametric localized modes in quadratic nonlinear photonic structures
We analyze two-color spatially localized modes formed by parametrically
coupled fundamental and second-harmonic fields excited at quadratic (or chi-2)
nonlinear interfaces embedded into a linear layered structure --- a
quasi-one-dimensional quadratic nonlinear photonic crystal. For a periodic
lattice of nonlinear interfaces, we derive an effective discrete model for the
amplitudes of the fundamental and second-harmonic waves at the interfaces (the
so-called discrete chi-2 equations), and find, numerically and analytically,
the spatially localized solutions --- discrete gap solitons. For a single
nonlinear interface in a linear superlattice, we study the properties of
two-color localized modes, and describe both similarities and differences with
quadratic solitons in homogeneous media.Comment: 9 pages, 8 figure
Absolute dimensions of the unevolved B-type eclipsing binary GG Orionis
We present photometric observations in B and V as well as spectroscopic
observations of the detached, eccentric 6.6-day double-lined eclipsing binary
GG Ori, a member of the Orion OB1 association. Absolute dimensions of the
components, which are virtually identical, are determined to high accuracy
(better than 1% in the masses and better than 2% in the radii) for the purpose
of testing various aspects of theoretical modeling. We obtain M(A) = 2.342 +/-
0.016 solar masses and R(A) = 1.852 +/- 0.025 solar radii for the primary, and
M(B) = 2.338 +/- 0.017 solar masses and R(B) = 1.830 +/- 0.025 solar radii for
the secondary. The effective temperature of both stars is 9950 +/- 200 K,
corresponding to a spectral type of B9.5. GG Ori is very close to the ZAMS, and
comparison with current stellar evolution models gives ages of 65-82 Myr or 7.7
Myr depending on whether the system is considered to be burning hydrogen on the
main sequence or still in the final stages of pre-main sequence contraction. We
have detected apsidal motion in the binary at a rate of dw/dt = 0.00061 +/-
0.00025 degrees per cycle, corresponding to an apsidal period of U = 10700 +/-
4500 yr. A substantial fraction of this (approximately 70%) is due to the
contribution from General Relativity.Comment: To appear in The Astronomical Journal, December 200
Mesoscopic models for DNA stretching under force: new results and comparison to experiments
Single molecule experiments on B-DNA stretching have revealed one or two
structural transitions, when increasing the external force. They are
characterized by a sudden increase of DNA contour length and a decrease of the
bending rigidity. It has been proposed that the first transition, at forces of
60--80 pN, is a transition from B to S-DNA, viewed as a stretched duplex DNA,
while the second one, at stronger forces, is a strand peeling resulting in
single stranded DNAs (ssDNA), similar to thermal denaturation. But due to
experimental conditions these two transitions can overlap, for instance for
poly(dA-dT). We derive analytical formula using a coupled discrete worm like
chain-Ising model. Our model takes into account bending rigidity, discreteness
of the chain, linear and non-linear (for ssDNA) bond stretching. In the limit
of zero force, this model simplifies into a coupled model already developed by
us for studying thermal DNA melting, establishing a connexion with previous
fitting parameter values for denaturation profiles. We find that: (i) ssDNA is
fitted, using an analytical formula, over a nanoNewton range with only three
free parameters, the contour length, the bending modulus and the monomer size;
(ii) a surprisingly good fit on this force range is possible only by choosing a
monomer size of 0.2 nm, almost 4 times smaller than the ssDNA nucleobase
length; (iii) mesoscopic models are not able to fit B to ssDNA (or S to ss)
transitions; (iv) an analytical formula for fitting B to S transitions is
derived in the strong force approximation and for long DNAs, which is in
excellent agreement with exact transfer matrix calculations; (v) this formula
fits perfectly well poly(dG-dC) and -DNA force-extension curves with
consistent parameter values; (vi) a coherent picture, where S to ssDNA
transitions are much more sensitive to base-pair sequence than the B to S one,
emerges.Comment: 14 pages, 9 figure
Quantum state engineering assisted by entanglement
We suggest a general scheme for quantum state engineering based on
conditional measurements carried out on entangled twin-beam of radiation.
Realistic detection schemes such as {\sc on/off} photodetection, homodyne
detection and joint measurement of two-mode quadratures are analyzed in
details. Imperfections of the apparatuses, such as nonunit quantum efficiency
and finite resolution, are taken into account. We show that conditional {\sc
on/off} photodetection provides a reliable scheme to verify nonclassicality,
whereas conditional homodyning represents a tunable and robust source of
squeezed light. We also describe optical teleportation as a conditional
measurement, and evaluate the degrading effects of finite amount of
entanglement, decoherence due to losses, and nonunit quantum efficiency.Comment: Some pics with low resolution. Originals at http://www.qubit.i
Single Molecule Statistics and the Polynucleotide Unzipping Transition
We present an extensive theoretical investigation of the mechanical unzipping
of double-stranded DNA under the influence of an applied force. In the limit of
long polymers, there is a thermodynamic unzipping transition at a critical
force value of order 10 pN, with different critical behavior for homopolymers
and for random heteropolymers. We extend results on the disorder-averaged
behavior of DNA's with random sequences to the more experimentally accessible
problem of unzipping a single DNA molecule. As the applied force approaches the
critical value, the double-stranded DNA unravels in a series of discrete,
sequence-dependent steps that allow it to reach successively deeper energy
minima. Plots of extension versus force thus take the striking form of a series
of plateaus separated by sharp jumps. Similar qualitative features should
reappear in micromanipulation experiments on proteins and on folded RNA
molecules. Despite their unusual form, the extension versus force curves for
single molecules still reveal remnants of the disorder-averaged critical
behavior. Above the transition, the dynamics of the unzipping fork is related
to that of a particle diffusing in a random force field; anomalous,
disorder-dominated behavior is expected until the applied force exceeds the
critical value for unzipping by roughly 5 pN.Comment: 40 pages, 18 figure
Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration
Peatlands have been subject to artificial drainage for centuries. This drainage has been in response to agricultural demand, forestry, horticultural and energy properties of peat and alleviation of flood risk. However, the are several environmental problems associated with drainage of peatlands. This paper describes the nature of these problems and examines the evidence for changes in hydrological and hydrochemical processes associated with these changes. Traditional black-box water balance approaches demonstrate little about wetland dynamics and therefore the science of catchment response to peat drainage is poorly understood. It is crucial that a more process-based approach be adopted within peatland ecosystems. The environmental problems associated with peat drainage have led, in part, to a recent reversal in attitudes to peatlands and we have seen a move towards wetland restoration. However, a detailed understanding of hydrological, hydrochemical and ecological process-interactions will be fundamental if we are to adequately restore degraded peatlands, preserve those that are still intact and understand the impacts of such management actions at the catchment scale
- …