66 research outputs found

    Virtual screening for inhibitors of the human TSLP:TSLPR interaction

    Get PDF
    The pro-inflammatory cytokine thymic stromal lymphopoietin (TSLP) plays a pivotal role in the pathophysiology of various allergy disorders that are mediated by type 2 helper T cell (Th2) responses, such as asthma and atopic dermatitis. TSLP forms a ternary complex with the TSLP receptor (TSLPR) and the interleukin-7-receptor subunit alpha (IL-7Ra), thereby activating a signaling cascade that culminates in the release of pro-inflammatory mediators. In this study, we conducted an in silico characterization of the TSLP: TSLPR complex to investigate the drugability of this complex. Two commercially available fragment libraries were screened computationally for possible inhibitors and a selection of fragments was subsequently tested in vitro. The screening setup consisted of two orthogonal assays measuring TSLP binding to TSLPR: a BLI-based assay and a biochemical assay based on a TSLP: alkaline phosphatase fusion protein. Four fragments pertaining to diverse chemical classes were identified to reduce TSLP: TSLPR complex formation to less than 75% in millimolar concentrations. We have used unbiased molecular dynamics simulations to develop a Markov state model that characterized the binding pathway of the most interesting compound. This work provides a proof-ofprinciple for use of fragments in the inhibition of TSLP: TSLPR complexation

    Characterisation of the cancer-associated glucocorticoid system:key role of 11β-hydroxysteroid dehydrogenase type 2

    Get PDF
    Background:Recent studies have shown that production of cortisol not only takes place in several non-adrenal peripheral tissues such as epithelial cells but, also, the local inter-conversion between cortisone and cortisol is regulated by the 11β-hydroxysteroid dehydrogenases (11β-HSDs). However, little is known about the activity of this non-adrenal glucocorticoid system in cancers.Methods:The presence of a functioning glucocorticoid system was assessed in human skin squamous cell carcinoma (SCC) and melanoma and further, in 16 epithelial cell lines from 8 different tissue types using ELISA, western blotting and immunofluorescence. 11β-HSD2 was inhibited both pharmacologically and by siRNA technology. Naïve CD8 + T cells were used to test the paracrine effects of cancer-derived cortisol on the immune system in vitro. Functional assays included cell-cell adhesion and cohesion in two-and three-dimensional models. Immunohistochemical data of 11β-HSD expression were generated using tissue microarrays of 40 cases of human SCCs as well as a database featuring 315 cancer cases from 15 different tissues.Results:We show that cortisol production is a common feature of malignant cells and has paracrine functions. Cortisol production correlated with the magnitude of glucocorticoid receptor (GR)-dependent inhibition of tumour-specific CD8 + T cells in vitro. 11β-HSDs were detectable in human skin SCCs and melanoma. Analyses of publicly available protein expression data of 11β-HSDs demonstrated that 11β-HSD1 and-HSD2 were dysregulated in the majority (73%) of malignancies. Pharmacological manipulation of 11β-HSD2 activity by 18β-glycyrrhetinic acid (GA) and silencing by specific siRNAs modulated the bioavailability of cortisol. Cortisol also acted in an autocrine manner and promoted cell invasion in vitro and cell-cell adhesion and cohesion in two-and three-dimensional models. Immunohistochemical analyses using tissue microarrays showed that expression of 11β-HSD2 was significantly reduced in human SCCs of the skin.Conclusions:The results demonstrate evidence of a cancer-associated glucocorticoid system and show for the first time, the functional significance of cancer-derived cortisol in tumour progression

    Survival of Staphylococcus Aureus on the Outer Shell of Fire Fighter Turnout Gear After Sanitation in a Commercial Washer/extractor

    No full text
    Background: Methicillin-resistant Staphylococcus aureus contamination on surfaces including turnout gear had been found throughout a number of fire stations. As such, the outer shell barrier of turnout gear jackets may be an indirect transmission source and proper disinfection is essential to reduce the risk of exposure to fire fighters. Cleaning practices vary considerably among fire stations, and a method to assess disinfection of gear washed in commercial washer/extractors is needed. Methods: Swatches (1 in. × 1.5 in.) of the outer shell fabrics, Gemini™, Advance™, and Pioneer™, of turnout gear were inoculated with S. aureus, and washed with an Environmental Protection Agency-registered sanitizer commonly used to wash turnout gear. To initially assess the sanitizer, inoculated swatches were washed in small tubes according to the American Society for Testing Materials E2274 Protocol for evaluating laundry sanitizers. Inoculated swatches were also pinned to turnout gear jackets and washed in a Milnor commercial washer/extractor. Viable S. aureus that remained attached to fabric swatches after washing were recovered and quantified. Scanning Electron Microscopy was used to characterize the stages of S. aureus biofilm formation on the swatches that can result in resistance to disinfection. Results: Disinfection in small tubes for only 10 s reduced the viability of S. aureus on Gemini™, Advance™, and Pioneer™ by 73, 99, and 100%, respectively. In contrast, disinfection of S. aureus-contaminated Gemini™ swatches pinned to turnout gear and washed in the washer/extractor was 99.7% effective. Scanning Electron Microscopy showed that biofilm formation begins as early as 5 h after attachment of S. aureus. Conclusion: This sanitizer and, likely, others containing the anti-microbial agent didecyl dimethyl ammonium chloride, is an effective disinfectant of S. aureus. Inclusion of contaminated outer shell swatches in the wash cycle affords a simple and quantitative method to assess sanitization of gear by commercial gear cleaning facilities. This methodology can be extended to assess for other bacterial contaminants. Sanitizer-resistant strains will continue to pose problems, and biofilm formation may affect the cleanliness of the washed turnout gear. Our methodology for assessing effectiveness of disinfection may help reduce the occupational exposure to fire fighters from bacterial contaminants

    Natural cytotoxicity receptors NKp30, NKp44 and NKp46 bind to different heparan sulfate/heparin sequences

    Full text link
    Natural Killer (NK) cells recognize and destroy tumors and virus-infected cells in an antibody-independent manner. The regulation of NK cells is mediated by activating and inhibiting receptors on the NK cell surface. One important family of activating receptors is the natural cytotoxicity receptors (NCRs) which include NKp30, NKp44 and NKp46. The NCRs initiate tumor targeting by recognition of heparan sulfate on cancer cells. This study aims to elucidate heparan sulfate structural motifs that are important for NCR binding. Microarray and surface plasmon resonance experiments with a small library of heparan sulfate/heparin oligosaccharides helped to clarify the binding preferences of the three NCRs. We demonstrate that the NCRs interact with highly charged HS/heparin structures, but differ in preferred modification patterns and chain lengths. The affinity of NKp30 and NKp44 for synthetic HS/heparin is approximately one order of magnitude higher than the affinity of NKp46. We further show the relevance of synthetic HS/heparin for the binding of NCRs to tumor cells and for NCR-mediated activation of natural killer cells. In conclusion, NCRs recognize different microdomains on heparan sulfate with different affinities

    Effects of Ultraviolet Germicidal Irradiation (UVGI) on N95 Respirator Filtration Performance and Structural Integrity

    No full text
    <div><p>The ability to disinfect and reuse disposable N95 filtering facepiece respirators (FFRs) may be needed during a pandemic of an infectious respiratory disease such as influenza. Ultraviolet germicidal irradiation (UVGI) is one possible method for respirator disinfection. However, UV radiation degrades polymers, which presents the possibility that UVGI exposure could degrade the ability of a disposable respirator to protect the worker. To study this, we exposed both sides of material coupons and respirator straps from four models of N95 FFRs to UVGI doses from 120–950 J/cm<sup>2</sup>. We then tested the particle penetration, flow resistance, and bursting strengths of the individual respirator coupon layers, and the breaking strength of the respirator straps. We found that UVGI exposure led to a small increase in particle penetration (up to 1.25%) and had little effect on the flow resistance. UVGI exposure had a more pronounced effect on the strengths of the respirator materials. At the higher UVGI doses, the strength of the layers of respirator material was substantially reduced (in some cases, by >90%). The changes in the strengths of the respirator materials varied considerably among the different models of respirators. UVGI had less of an effect on the respirator straps; a dose of 2360 J/cm<sup>2</sup> reduced the breaking strength of the straps by 20–51%. Our results suggest that UVGI could be used to effectively disinfect disposable respirators for reuse, but the maximum number of disinfection cycles will be limited by the respirator model and the UVGI dose required to inactivate the pathogen.</p></div
    • …
    corecore