399 research outputs found
Symmetrised Characterisation of Noisy Quantum Processes
A major goal of developing high-precision control of many-body quantum
systems is to realise their potential as quantum computers. Probably the most
significant obstacle in this direction is the problem of "decoherence": the
extreme fragility of quantum systems to environmental noise and other control
limitations. The theory of fault-tolerant quantum error correction has shown
that quantum computation is possible even in the presence of decoherence
provided that the noise affecting the quantum system satisfies certain
well-defined theoretical conditions. However, existing methods for noise
characterisation have become intractable already for the systems that are
controlled in today's labs. In this paper we introduce a technique based on
symmetrisation that enables direct experimental characterisation of key
properties of the decoherence affecting a multi-body quantum system. Our method
reduces the number of experiments required by existing methods from exponential
to polynomial in the number of subsystems. We demonstrate the application of
this technique to the optimisation of control over nuclear spins in the solid
state.Comment: About 12 pages, 5 figure
Massive Schwinger model and its confining aspects on curved space-time
Using a covariant method to regularize the composite operators, we obtain the
bosonized action of the massive Schwinger model on a classical curved
background. Using the solution of the bosonic effective action, the energy of
two static external charges with finite and large distance separation on a
static curved space-time is obtained. The confining behavior of this model is
also explicitly discussed.Comment: A disscussion about the infrared regularization and also two
references are added. Accepted for publication in Phys. Rev. D (2001
A Regularization of Burgers Equation using a Filtered Convective Velocity
This paper examines the properties of a regularization of Burgers equation in
one and multiple dimensions using a filtered convective velocity, which we have
dubbed as convectively filtered Burgers (CFB) equation. A physical motivation
behind the filtering technique is presented. An existence and uniqueness
theorem for multiple dimensions and a general class of filters is proven.
Multiple invariants of motion are found for the CFB equation and are compared
with those found in viscous and inviscid Burgers equation. Traveling wave
solutions are found for a general class of filters and are shown to converge to
weak solutions of inviscid Burgers equation with the correct wave speed.
Accurate numerical simulations are conducted in 1D and 2D cases where the shock
behavior, shock thickness, and kinetic energy decay are examined. Energy
spectrum are also examined and are shown to be related to the smoothness of the
solutions
Electrostatic self-energy and Bekenstein entropy bound in the massive Schwinger model
We obtain the electrostatic energy of two opposite charges near the horizon
of stationary black-holes in the massive Schwinger model. Besides the confining
aspects of the model, we discuss the Bekenstein entropy upper bound of a
charged object using the generalized second law. We show that despite the
massless case, in the massive Schwinger model the entropy of the black hole and
consequently the Bekenstein bound are altered by the vacuum polarization.Comment: 14 pages, accepted for publication in "Gen. Rel. Grav. (2005)
Quantum Process Tomography: Resource Analysis of Different Strategies
Characterization of quantum dynamics is a fundamental problem in quantum
physics and quantum information science. Several methods are known which
achieve this goal, namely Standard Quantum Process Tomography (SQPT),
Ancilla-Assisted Process Tomography (AAPT), and the recently proposed scheme of
Direct Characterization of Quantum Dynamics (DCQD). Here, we review these
schemes and analyze them with respect to some of the physical resources they
require. Although a reliable figure-of-merit for process characterization is
not yet available, our analysis can provide a benchmark which is necessary for
choosing the scheme that is the most appropriate in a given situation, with
given resources. As a result, we conclude that for quantum systems where
two-body interactions are not naturally available, SQPT is the most efficient
scheme. However, for quantum systems with controllable two-body interactions,
the DCQD scheme is more efficient than other known QPT schemes in terms of the
total number of required elementary quantum operations.Comment: 15 pages, 5 figures, published versio
Two-photon quantum walks in an elliptical direct-write waveguide array
Integrated optics provides an ideal test bed for the emulation of quantum
systems via continuous-time quantum walks. Here we study the evolution of
two-photon states in an elliptic array of waveguides. We characterise the
photonic chip via coherent-light tomography and use the results to predict
distinct differences between temporally indistinguishable and distinguishable
two-photon inputs which we then compare with experimental observations. Our
work highlights the feasibility for emulation of coherent quantum phenomena in
three-dimensional waveguide structures.Comment: 8 pages, 7 figure
Stability of circular orbits of spinning particles in Schwarzschild-like space-times
Circular orbits of spinning test particles and their stability in
Schwarzschild-like backgrounds are investigated. For these space-times the
equations of motion admit solutions representing circular orbits with particles
spins being constant and normal to the plane of orbits. For the de Sitter
background the orbits are always stable with particle velocity and momentum
being co-linear along them. The world-line deviation equations for particles of
the same spin-to-mass ratios are solved and the resulting deviation vectors are
used to study the stability of orbits. It is shown that the orbits are stable
against radial perturbations. The general criterion for stability against
normal perturbations is obtained. Explicit calculations are performed in the
case of the Schwarzschild space-time leading to the conclusion that the orbits
are stable.Comment: eps figures, submitted to General Relativity and Gravitatio
Spinning particles in Schwarzschild-de Sitter space-time
After considering the reference case of the motion of spinning test bodies in
the equatorial plane of the Schwarzschild space-time, we generalize the results
to the case of the motion of a spinning particle in the equatorial plane of the
Schwarzschild-de Sitter space-time. Specifically, we obtain the loci of turning
points of the particle in this plane. We show that the cosmological constant
affect the particle motion when the particle distance from the black hole is of
the order of the inverse square root of the cosmological constant.Comment: 8 pages, 5 eps figures, submitted to Gen.Rel.Gra
Fractional recurrence in discrete-time quantum walk
Quantum recurrence theorem holds for quantum systems with discrete energy
eigenvalues and fails to hold in general for systems with continuous energy. We
show that during quantum walk process dominated by interference of amplitude
corresponding to different paths fail to satisfy the complete quantum
recurrence theorem. Due to the revival of the fractional wave packet, a
fractional recurrence characterized using quantum P\'olya number can be seen.Comment: 10 pages, 11 figure : Accepted to appear in Central European Journal
of Physic
- …