29 research outputs found

    The Polycomb Protein and E3 Ubiquitin Ligase Ring1B Harbors an IRES in its Highly Conserved 5β€² UTR

    Get PDF
    Ring1B is an essential member of the highly conserved Polycomb group proteins, which orchestrate developmental processes, cell growth and stem cell fate by modifying local chromatin structure. Ring1B was found to be the E3 ligase that monoubiquitinates histone H2A, which adds a new level of chromatin modification to Polycomb group proteins. Here we report that Ring1B belongs to the exclusive group of proteins that for their translation depend on a stable 5β€² UTR sequence in their mRNA known as an Internal Ribosome Entry Site (IRES). In cell transfection assays the Ring1B IRES confers significantly higher expression levels of Ring1B than a Ring1B cDNA without the IRES. Also, dual luciferase assays show strong activity of the Ring1B IRES. Although our findings indicate Ring1B can be translated under conditions where cap-dependent translation is impaired, we found the Ring1B IRES to be cap-dependent. This raises the possibility that translational control of Ring1B is a multi-layered process and that translation of Ring1B needs to be maintained under varying conditions, which is in line with its essential role as an E3 ligase for monoubiquitination of histone H2A in the PRC1 Polycomb protein complex

    DNA Secondary Structures for Probe Design

    No full text
    Visualizing DNA secondary structures is essential to fast and efficient design of probes for DNA chips. There are several programs available for visualizing single-stranded RNA secondary structures, but these programs cannot be used to draw DNA secondary structures formed by several hundred to thousand primers and target genes. We have developed an algorithm and program for visualizing DNA secondary structures formed by multiple strands. We believe the program will be a valuable tool for designing primers and probes in DNA chips. This work was supported by the Korea Science and Engineering Foundation (KOSEF) under grant R01-2003-000-10461-0

    cis-Acting Sequences Required for Coronavirus Infectious Bronchitis Virus Defective-RNA Replication and Packaging

    No full text
    The parts of the RNA genome of infectious bronchitis virus (IBV) required for replication and packaging of the RNA were investigated using deletion mutagenesis of a defective RNA (D-RNA) CD-61 (6.1 kb) containing a chloramphenicol acetyltransferase reporter gene. A D-RNA with the first 544, but not as few as 338, nucleotides (nt) of the 5β€² terminus was replicated; the 5β€² untranslated region (UTR) comprises 528 nt. Region I of the 3β€² UTR, adjacent to the nucleocapsid protein gene, comprised 212 nt and could be removed without impairment of replication or packaging of D-RNAs. A D-RNA with the final 338 nt, including the 293 nt in the highly conserved region II of the 3β€² UTR, was replicated. Thus, the 5β€²-terminal 544 nt and 3β€²-terminal 338 nt contained the necessary signals for RNA replication. Phylogenetic analysis of 19 strains of IBV and 3 strains of turkey coronavirus predicted a conserved stem-loop structure at the 5β€² end of region II of the 3β€² UTR. Removal of the predicted stem-loop structure abolished replication of the D-RNAs. D-RNAs in which replicase gene 1b-derived sequences had been removed or replaced with all the downstream genes were replicated well but were rescued poorly, suggesting inefficient packaging. However, no specific part of the 1b gene was required for efficient packaging

    Characterization of a Cell Surface Protein of Clostridium difficile with Adhesive Properties

    No full text
    Our laboratory has previously shown that Clostridium difficile adherence to cultured cells is enhanced after heat shock at 60Β°C and that it is mediated by a proteinaceous surface component. The present study was undertaken to identify the surface molecules of this bacterium that could play a role in its adherence to the intestine. The cwp66 gene, encoding a cell surface-associated protein of C. difficile 79-685, was isolated by immunoscreening of a C. difficile gene library with polyclonal antibodies against C. difficile heated at 60Β°C. The Cwp66 protein (66 kDa) contains two domains, each carrying three imperfect repeats and one presenting homologies to the autolysin CwlB of Bacillus subtilis. A survey of 36 strains of C. difficile representing 11 serogroups showed that the 3β€² portion of the cwp66 gene is variable; this was confirmed by sequencing of cwp66 from another strain, C-253. Two recombinant protein fragments corresponding to the two domains of Cwp66 were expressed in fusion with glutathione S-transferase in Escherichia coli and purified by affinity chromatography using gluthatione-Sepharose 4B. Antibodies raised against the two domains recognized Cwp66 in bacterial surface extracts. By immunoelectron microscopy, the C-terminal domain was found to be cell surface exposed. When used as inhibitors in cell binding studies, the antibodies and protein fragments partially inhibited adherence of C. difficile to cultured cells, confirming that Cwp66 is an adhesin, the first to be identified in clostridia
    corecore