15 research outputs found

    Structure and Mode-of-Action of the Two-Peptide (Class-IIb) Bacteriocins

    Get PDF
    This review focuses on the structure and mode-of-action of the two-peptide (class-IIb) bacteriocins that consist of two different peptides whose genes are next to each other in the same operon. Optimal antibacterial activity requires the presence of both peptides in about equal amounts. The two peptides are synthesized as preforms that contain a 15–30 residue double-glycine-type N-terminal leader sequence that is cleaved off at the C-terminal side of two glycine residues by a dedicated ABC-transporter that concomitantly transfers the bacteriocin peptides across cell membranes. Two-peptide bacteriocins render the membrane of sensitive bacteria permeable to a selected group of ions, indicating that the bacteriocins form or induce the formation of pores that display specificity with respect to the transport of molecules. Based on structure–function studies, it has been proposed that the two peptides of two-peptide bacteriocins form a membrane-penetrating helix–helix structure involving helix–helix-interacting GxxxG-motifs that are present in all characterized two-peptide bacteriocins. It has also been suggested that the membrane-penetrating helix–helix structure interacts with an integrated membrane protein, thereby triggering a conformational alteration in the protein, which in turn causes membrane-leakage. This proposed mode-of-action is similar to the mode-of-action of the pediocin-like (class-IIa) bacteriocins and lactococcin A (a class-IId bacteriocin), which bind to a membrane-embedded part of the mannose phosphotransferase permease in a manner that causes membrane-leakage and cell death

    Directed genomic integration, gene replacement, and integrative gene expression in Streptococcus thermophilus.

    Get PDF
    Several pGEM5- and pUC19-derived plasmids containing a selectable erythromycin resistance marker were integrated into the chromosome of Streptococcus thermophilus at the loci of the lactose-metabolizing genes. Integration occurred via homologous recombination and resulted in cointegrates between plasmid and genome, flanked by the homologous DNA used for integration. Selective pressure on the plasmid-located erythromycin resistance gene resulted in multiple amplifications of the integrated plasmid. Release of this selective pressure, however, gave way to homologous resolution of the cointegrate structures. By integration and subsequent resolution, we were able to replace the chromosomal lacZ gene with a modified copy carrying an in vitro-generated deletion. In the same way, we integrated a promoterless chloramphenicol acetyltransferase (cat) gene between the chromosomal lacS and lacZ genes of the lactose operon. The inserted cat gene became a functional part of the operon and was expressed and regulated accordingly. Selective pressure on the essential lacS and lacZ genes under normal growth conditions in milk ensures the maintenance and expression of the integrated gene. As there are only minimal repeated DNA sequences (an NdeI site) flanking the inserted cat gene, it was stably maintained even in the absence of lactose, i.e., when grown on sucrose or glucose. The methodology represents a stable system in which to express and regulate foreign genes in S. thermophilus, which could qualify in the future for an application with food
    corecore