4 research outputs found

    Roller compaction : ribbon splitting and sticking

    Get PDF
    Roller compaction is the main technique employed in dry granulation. Ribbon sticking and splitting are among the major factors that can hinder the use of this process for some formulations. Ribbon splitting can occur either transversally (through the ribbon thickness) or longitudinally (through the ribbon width). It was observed that transverse splitting is commonly associated with sticking of the split ribbons to the rollers and results in an inferior performance of the process. Longitudinal splitting is associated with an across-width distribution of the ribbon density so that there may an adverse effect on the mechanical strength and dissolution properties of the tablets formed from the milled granules. The aim of the current work was to elucidate the mechanisms of splitting by an experimental study involving single component powders with a range of yield strengths, including those that are commonly used as excipients. Both smooth and knurled rollers were employed without and with lubrication by applying magnesium stearate to the rollers. The minimum gap was fixed and the maximum roll stress was varied. The observed trends for the smooth rollers were rationalised in terms of a splitting index, which is a measure of the residual stresses driving crack growth relative to the tensile strength of the ribbons. There was a lower limit at which splitting was observed but the occurrence of transverse splitting decreased and that for longitudinal splitting increased with increasing values of the index, which was accompanied by an increase in mixed transverse-longitudinal splitting. Transverse splitting was always associated with sticking to the rollers and was prevented by external lubrication. The main difference with the knurled rollers was that in some cases transverse splitting occurred without sticking to the rollers. A detailed discussion of the mechanisms involved is presented

    Twin screw granulation : a simpler re-derivation of quantifying fill level

    Full text link
    The fill level is defined as the volume occupied by the powder and granules inside the twin-screw granulator in proportion to the maximum barrel channel void 'free' volume. In literature, the fill level is one of the key factors that determine the final granule properties as it relies on several factors such as the screw speed, screw element geometry, mass flow rate and barrel length. However, quantitative prediction of the fill level in twin-screw granulation (TSG) is still a developing area, which is required to enable effective development of process design space, to yield a product with desired quality attributes for all process scale levels (small to large equipment). In this study, a simple geometrical model is presented that predicts the barrel channel fill level in TSG. This model relates the volumetric flow rate to the forward volumetric conveying rate of the screws when they advance in the axial direction. Experimentation was conducted to validate the model by analytically measuring mass hold-up, the amount of material remaining in the barrel after steady state was reached, as the fill level is proportional to mass hold-up. Furthermore, the trends in the extent of granulation with the proposed model were investigated. Good agreement was found between the proposed fill level model and the mass hold-up for various screw elements, therefore the model provides a more practical measure of the fill level in TSG
    corecore