1,111 research outputs found
Photodiode read-out of the ALICE photon spectrometer crystals
Proposal of abstract for LEB99, Snowmass, Colorado, 20-24 September 1999The PHOton Spectrometer of the ALICE experiment is an electromagnetic calorimeter of high granularity consisting of 17280 lead-tungstate (PWO) crystals of dimensions 22x22x180 mm3, read out by large-area PIN-diodes with very low-noise front-end electronics. The crystal assembly is operated at -25C to increase the PWO light yield. A 16.1x17.1 mm2 photodiode, optimized for the PWO emissio spectrum at 400-500 nm, has been developed. The 20x20 mm2 preamplifier PCB is attached to the back side of the diode ceramic frame. The charge sensitive preamplifier is built in discrete logic with two input JFETs for optimum matching with the ~150pF PIN-diode. A prototype shaper has been designed and built in discrete logic. For a detector matrix of 64 units the measured ENCs are between 450-550e at -25C. Beam tests demonstrate that the required energy resolution is reached.Summary:The PHOton Spectrometer of the ALICE experiment is an electromagnetic calorimeter of high granularity consisting of 17280 lead-tungstate (PWO) crystals of dimensions 22x22x180 mm3, coupled to large-area PIN-diodes with matching low-noise preamplifiers. PHOS is optimized for measuring photons, pi0s and eta mesons in the momentum ranges 0.5-10, 1-10 and 2-10 GeV/c, respectively, and is designed for the expected large number of particles that will be produced in central Pb-Pb collisions. Lead tungstate (PWO) is a fast scintillating crystal with a rather complex emission spectrum, consisting of two components: a blue component peaking at 420 nm and a green component peaking at 480-520 nm. The light yield of PWO at room temperature is low compared with other heavy scintillating crystals, for instance BGO. However, the yield depends strongly on the temperature with a coefficient of ~-2 degree. At the selected operating temperature of -25C the yield is about a factor of 3 higher compared to room temperature. Still, in order to reach the required energy resolution for a PHOS channel, an ENC noise of less than 600e for the PIN-diode-preamplifier-shaper stage is required. This is a very low value taking into account the high capacitance of 150-200 pF of the large area PIN-diodes. In collaboration with the PHOS project, the company AME (Horten, Norway) has designed and produced a PIN-photodiode optimized for the cross-section and spectral responsivity of the PHOS PWO crystal. The photodiode has an active area of 17.1x16.1 mm2 and is fabricated on n-type silicon material of thickness 280 um. The wafer specific resistivity is between 3000 and 6000 ohm-cm, which corresponds to a depletion voltage of 70V. The photodiode response is optimized for the spectral region 400-500 nm in order to match the PWO emission spectrum. The PIN-diode is mounted on a ceramic substrate 0.65 mm thick. On this substrate the diode is surrounded by a ceramic frame. The preamplifier PCB of dimension 20x20 mm2 is attached to the back side of the frame. The PIN-diode and bondings to ground and preamplifier input are protected by an optically transparent epoxy layer. The front side of the PIN-diode is glued onto the endface of the PWO crystal with optically transparent glue (Melt-Mount Quick-Stick, Cargille Laboratories, USA). Each crystal is wrapped in White Tyvek to ensure maximum light collection efficiency and optical insulation between the crystals. The PHOS detector consists of four independent modules, each with 4320 channels. The crystal assembly with the photo detectors are operated at -25 +/- 0.3C. The power dissipation per module is ~1 kW. The charge sensitive preamplifier is an operational amplifier built in discrete logic and with two input JFETs (BF861A). Using two JFETs in parallel gives the lowest noise for detector capacitance >100 pF. A prototype shaper, comprising three amplification stages, has been designed and built in discrete logic. For a PIN-diode with capacitance ~150 pF and a leakage current <1 nA under cooling, calculations give optimum time differentiation and integration constants around 3 microsec. For a detector matrix of 64 units the measured ENCs are between 450-550 e at -25C. Beam tests of this matrix show that the required energy resolution for the PHOS is reached
A Guided Workbook Intervention (WorkPlan) to Support Work-Related Goals Among Cancer Survivors: Protocol of a Feasibility Randomized Controlled Trial
Background: Returning to and staying at work following illness is associated with better physical and psychological functioning. Not working has been shown to be associated with reduced self-esteem, lowered self-efficacy, and decreased belief in one's ability to return to the workplace. Although there is a growing body of research looking at what predicts return to work following cancer treatment, there are fewer studies examining interventions targeting return to work. Objective: The primary objective is to assess the feasibility and acceptability of a theoretically led workbook intervention designed to support cancer patients in returning to work to inform a fully powered randomized controlled trial (RCT). Methods: This is a multicenter feasibility RCT where the main analysis uses a qualitative approach. Sixty participants (aged 18-65 years) who have received a diagnosis of cancer and who intend to return to work will be randomized to either the WorkPlan intervention group or a usual care group (ratio 1:1). Participants in the intervention group will receive a guided workbook intervention (which contains activities aimed at eliciting thoughts and beliefs, identifying targets and actions, and concrete steps to achieve goals) and will receive telephone support over a 4-week period. The primary outcome measure is time taken to return to work (in days), and secondary outcome measures include mood, quality of life, illness perceptions, and job satisfaction. Data will be collected through postal questionnaires administered immediately postintervention and at 6- and 12-month follow-ups. In addition, interviews will be undertaken immediately postintervention (to explore acceptability of the intervention and materials) and at 12-month follow-up (to explore perceptions of participation in the trial and experiences of returning to work). Results: Enrollment for the study will be completed in May 2016. Data analysis will commence in April 2017, and the first results are expected to be submitted for publication in late 2017. Conclusions: Currently no standardized return-to-work intervention based on targeting cancer patient beliefs is in existence. If the intervention is shown to be feasible and acceptable, the results of this study will inform a future full RCT with the potential to provide a valuable and cost-efficient tool in supporting cancer survivors in the return-to-work process
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector
A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino
Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector
A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13 TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
The small angle tile calorimeter in the DELPHI experiment
The {\bf S}mall angle {\bf TI}le {\bf C}alorimeter ({\bf STIC}) provides calorimetric coverage in the very forward region of the DELPHI experiment at the CERN LEP collider. The structure of the calorimeters, built with a so-called ``shashlik'' technique, gives a perfectly hermetic calorimeter and still allows for the insertion of tracking detectors within the sampling structure to measure the direction of the showering particle. A charged-particle veto system, composed of two scintillator layers, makes it possible to trigger on single photon events and provides e- separat ion. Results are presented from the extensive studies of these detectors in the CERN testbeams prior to installation and of the detector performance at LEP
Incidence of cancer and overall risk of mortality in individuals treated with raltegravir-based and non-raltegravir-based combination antiretroviral therapy regimens
Objectives: There are currently few data on the long-term risk of cancer and death in individuals taking raltegravir (RAL). The aim of this analysis was to evaluate whether there is evidence for an association. Methods: The EuroSIDA cohort was divided into three groups: those starting RAL-based combination antiretroviral therapy (cART) on or after 21 December 2007 (RAL); a historical cohort (HIST) of individuals adding a new antiretroviral (ARV) drug (not RAL) to their cART between 1 January 2005 and 20 December 2007, and a concurrent cohort (CONC) of individuals adding a new ARV drug (not RAL) to their cART on or after 21 December 2007. Baseline characteristics were compared using logistic regression. The incidences of newly diagnosed malignancies and death were compared using Poisson regression. Results: The RAL cohort included 1470 individuals [with 4058 person-years of follow-up (PYFU)] compared with 3787 (4472 PYFU) and 4467 (10 691 PYFU) in the HIST and CONC cohorts, respectively. The prevalence of non-AIDS-related malignancies prior to baseline tended to be higher in the RAL cohort vs. the HIST cohort [adjusted odds ratio (aOR) 1.31; 95% confidence interval (CI) 0.95–1.80] and vs. the CONC cohort (aOR 1.89; 95% CI 1.37–2.61). In intention-to-treat (ITT) analysis (events: RAL, 50; HIST, 45; CONC, 127), the incidence of all new malignancies was 1.11 (95% CI 0.84–1.46) per 100 PYFU in the RAL cohort vs. 1.20 (95% CI 0.90–1.61) and 0.83 (95% CI 0.70–0.99) in the HIST and CONC cohorts, respectively. After adjustment, there was no evidence for a difference in the risk of malignancies [adjusted rate ratio (RR) 0.73; 95% CI 0.47–1.14 for RALvs. HIST; RR 0.95; 95% CI 0.65–1.39 for RALvs. CONC] or mortality (adjusted RR 0.87; 95% CI 0.53–1.43 for RALvs. HIST; RR 1.14; 95% CI 0.76–1.72 for RALvs. CONC). Conclusions: We found no evidence for an oncogenic risk or poorer survival associated with using RAL compared with control groups.Peer reviewe
Infection-related and -unrelated malignancies, HIV and the aging population
Funding Information: Conflicts of interest: JR reports personal fees from Abbvie, Bionor, BMS, Boehringer, Gilead, Merck, Janssen, Tobira, Tibotec and ViiV, outside the submitted work. OK has received honoraria, consultancy and/or lecture fees from Abbott, Gilead, GSK, Janssen, Merck, Tibotec and Viiv outside the submitted work. All other authors state no commercial or other associations that may pose a conflict of interest. Funding: Primary support for EuroSIDA is provided by the European Commission BIOMED 1 (CT94-1637), BIOMED 2 (CT97-2713), 5th Framework (QLK2-2000-00773), 6th Framework (LSHP-CT-2006-018632) and 7th Framework (FP7/2007?2013; EuroCoord n? 260694) programmes. Current support also includes unrestricted grants from Janssen R&D, Merck and Co. Inc., Pfizer Inc. and GlaxoSmithKline LLC. The participation of centres in Switzerland was supported by The Swiss National Science Foundation (Grant 108787). The authors have no financial disclosures to make. Author contributions: LS developed the project, analysed the data, and was responsible for writing the manuscript. ?HB and OK contributed to the study design and analysis, interpretation of the data and writing of the manuscript. JL proposed the project and contributed to the study design, ideas for analysis, interpretation of the data and writing of the manuscript. BL, PD, AC, JR, BK, JT and IK contributed to national coordination, study design and writing of the manuscript. AM supervised the project and contributed to the study design and analysis, interpretation of the data and writing of the manuscript. Publisher Copyright: © 2016 British HIV AssociationObjectives: HIV-positive people have increased risk of infection-related malignancies (IRMs) and infection-unrelated malignancies (IURMs). The aim of the study was to determine the impact of aging on future IRM and IURM incidence. Methods: People enrolled in EuroSIDA and followed from the latest of the first visit or 1 January 2001 until the last visit or death were included in the study. Poisson regression was used to investigate the impact of aging on the incidence of IRMs and IURMs, adjusting for demographic, clinical and laboratory confounders. Linear exponential smoothing models forecasted future incidence. Results: A total of 15 648 people contributed 95 033 person-years of follow-up, of whom 610 developed 643 malignancies [IRMs: 388 (60%); IURMs: 255 (40%)]. After adjustment, a higher IRM incidence was associated with a lower CD4 count [adjusted incidence rate ratio (aIRR) CD4 count < 200 cells/μL: 3.77; 95% confidence interval (CI) 2.59, 5.51; compared with ≥ 500 cells/μL], independent of age, while a CD4 count < 200 cells/μL was associated with IURMs in people aged < 50 years only (aIRR: 2.51; 95% CI 1.40–4.54). Smoking was associated with IURMs (aIRR: 1.75; 95% CI 1.23, 2.49) compared with never smokers in people aged ≥ 50 years only, and not with IRMs. The incidences of both IURMs and IRMs increased with older age. It was projected that the incidence of IRMs would decrease by 29% over a 5-year period from 3.1 (95% CI 1.5–5.9) per 1000 person-years in 2011, whereas the IURM incidence would increase by 44% from 4.1 (95% CI 2.2–7.2) per 1000 person-years over the same period. Conclusions: Demographic and HIV-related risk factors for IURMs (aging and smoking) and IRMs (immunodeficiency and ongoing viral replication) differ markedly and the contribution from IURMs relative to IRMs will continue to increase as a result of aging of the HIV-infected population, high smoking and lung cancer prevalence and a low prevalence of untreated HIV infection. These findings suggest the need for targeted preventive measures and evaluation of the cost−benefit of screening for IURMs in HIV-infected populations.publishersversionPeer reviewe
- …