31 research outputs found

    A new generic open pit mine planning process with risk assessment ability

    Get PDF
    Conventionally, mining industry relies on a deterministic view, where a unique mine plan is determined based on a single resource model. A major shortfall of this approach is the inability to assess the risk caused by the well-known geological uncertainty, i.e. the in situ grade and tonnage variability of the mineral deposit. Despite some recent attempts in developing stochastic mine planning models which have demonstrated promising results, the industry still remains sceptical about this innovative idea. With respect to unbiased linear estimation, kriging is the most popular and reliable deterministic interpolation technique for resource estimation and it appears to remain its popularity in the near future. This paper presents a new systematic framework to quantify the risk of kriging-based mining projects due to the geological uncertainties. Firstly, conditional simulation is implemented to generate a series of equally-probable orebody realisations and these realisations are then compared with the kriged resource model to analyse its geological uncertainty. Secondly, a production schedule over the life of mine is determined based on the kriged resource model. Finally, risk profiles of that production schedule, namely ore and waste tonnage production, blending grade and Net Present Value (NPV), are constructed using the orebody realisations. The proposed model was applied on a multi-element deposit and the result demonstrates that that the kriging-based mine plan is unlikely to meet the production targets. Especially, the kriging-based mine plan overestimated the expected NPV at a magnitude of 6.70% to 7.34% (135 Mto151 M to 151 M). A new multivariate conditional simulation framework was also introduced in this paper to cope with the multivariate nature of the deposit. Although an iron ore deposit is used to prove the concepts, the method can easily be adapted to other kinds of mineral deposits, including surface coal mine

    Transferring sampling errors into geostatistical modelling

    Full text link
    Geostatistical modelling aims at providing unbiased estimates of the grades of elements of economic interest in mining operations, and assessing the associated uncertainty in these resources and reserves. Conventional practice consists of using the data as errorfree values and performing the typical steps of data analysis - domaining, semivariogram analysis, and estimation/simulation. However, in many mature deposits, information comes from different drilling campaigns that were sometimes completed decades ago, when little or no quality assurance and quality control (QA/QC) procedures were available. Although this legacy data may have significant sampling errors, it provides valuable information and should be combined with more recent data that has been subject to strict QA/QC procedures. In this paper we show that ignoring the errors associated with sample data considerably underestimates the uncertainty (and consequently the economic risk) associated with a mining project. We also p
    corecore