750 research outputs found

    Reconstruction of the second layer of Ag on Pt(111)

    Full text link
    The reconstruction of an Ag monolayer on Ag/Pt(111) is analyzed theoretically, employing a vertically extended Frenkel-Kontorova model whose parameters are derived from density functional theory. Energy minimization is carried out using simulated quantum annealing techniques. Our results are compatible with the STM experiments, where a striped pattern is initially found which transforms into a triangular reconstruction upon annealing. In our model we recognize the first structure as a metastable state, while the second one is the true energy minimum

    Numerical stability of a new conformal-traceless 3+1 formulation of the Einstein equation

    Full text link
    There is strong evidence indicating that the particular form used to recast the Einstein equation as a 3+1 set of evolution equations has a fundamental impact on the stability properties of numerical evolutions involving black holes and/or neutron stars. Presently, the longest lived evolutions have been obtained using a parametrized hyperbolic system developed by Kidder, Scheel and Teukolsky or a conformal-traceless system introduced by Baumgarte, Shapiro, Shibata and Nakamura. We present a new conformal-traceless system. While this new system has some elements in common with the Baumgarte-Shapiro-Shibata-Nakamura system, it differs in both the type of conformal transformations and how the non-linear terms involving the extrinsic curvature are handled. We show results from 3D numerical evolutions of a single, non-rotating black hole in which we demonstrate that this new system yields a significant improvement in the life-time of the simulations.Comment: 7 pages, 2 figure

    Rare earth based nanostructured materials: Synthesis, functionalization, properties and bioimaging and biosensing applications

    Get PDF
    Rare earth based nanostructures constitute a type of functional materials widely used and studied in the recent literature. The purpose of this review is to provide a general and comprehensive overview of the current state of the art, with special focus on the commonly employed synthesis methods and functionalization strategies of rare earth based nanoparticles and on their different bioimaging and biosensing applications. The luminescent (including downconversion, upconversion and permanent luminescence) and magnetic properties of rare earth based nanoparticles, as well as their ability to absorb X-rays, will also be explained and connected with their luminescent, magnetic resonance and X-ray computed tomography bioimaging applications, respectively. This review is not only restricted to nanoparticles, and recent advances reported for in other nanostructures containing rare earths, such as metal organic frameworks and lanthanide complexes conjugated with biological structures, will also be commented on.European Union 267226Ministerio de Economía y Competitividad MAT2014-54852-

    Incorporation of nio into sio2, tio2, al2o3, and na4.2ca2.8(si6o18) matrices: Medium effect on the optical properties and catalytic degradation of methylene blue

    Get PDF
    The medium effect of the optical and catalytic degradation of methylene blue was studied in the NiO/SiO2, NiO/TiO2, NiO/Al2O3, and NiO/Na4.2Ca2.8(Si6O18) composites, which were prepared by a solid-state method. The new composites were characterized by XRD (X-ray diffraction of powder), SEM/EDS, TEM, and HR-TEM. The size of the NiO nanoparticles obtained from the PSP-4-PVP (polyvinylpyrrolidone) precursors inside the different matrices follow the order of SiO2 > TiO2 > Al2O3 . However, NiO nanoparticles obtained from the chitosan precursor does not present an effect on the particle size. It was found that the medium effect of the matrices (SiO2, TiO2, Al2O3, and Na4.2Ca2.8(Si6O18)) on the photocatalytic methylene blue degradation, can be described as a specific interaction of the NiO material acting as a semiconductor with the MxOy materials through a possible p-n junction. The highest catalytic activity was found for the TiO2 and glass composites where a favorable p-n junction was formed. The isolating character of Al2O3 and SiO2 and their non-semiconductor behavior preclude this interaction to form a p-n junction, and thus a lower catalytic activity. NiO/SiO2 and NiO/Na4.2Ca2.8(Si6O18) showed a similar photocatalytic behavior. On the other hand, the effect of the matrix on the optical properties for the NiO/SiO2, NiO/TiO2, NiO/Al2O3, and NiO/Na4.2Ca2.8(Si6O18) composites can be described by the different dielectric constants of the SiO2, TiO2, Al2O3, Na4.2Ca2.8(Si6O18) matrices. The maxima absorption of the composites (¿max) exhibit a direct relationship with the dielectric constants, while their semiconductor bandgap (Eg) present an inverse relationship with the dielectric constants. A direct relationship between ¿max and Eg was found from these correlations. The effect of the polymer precursor on the particle size can explain some deviations from this relationship, as the correlation between the particle size and absorption is well known. Finally, the NiO/Na4.2Ca2.8(Si6O18) composite was reported in this work for the first time

    Implementation of higher-order absorbing boundary conditions for the Einstein equations

    Full text link
    We present an implementation of absorbing boundary conditions for the Einstein equations based on the recent work of Buchman and Sarbach. In this paper, we assume that spacetime may be linearized about Minkowski space close to the outer boundary, which is taken to be a coordinate sphere. We reformulate the boundary conditions as conditions on the gauge-invariant Regge-Wheeler-Zerilli scalars. Higher-order radial derivatives are eliminated by rewriting the boundary conditions as a system of ODEs for a set of auxiliary variables intrinsic to the boundary. From these we construct boundary data for a set of well-posed constraint-preserving boundary conditions for the Einstein equations in a first-order generalized harmonic formulation. This construction has direct applications to outer boundary conditions in simulations of isolated systems (e.g., binary black holes) as well as to the problem of Cauchy-perturbative matching. As a test problem for our numerical implementation, we consider linearized multipolar gravitational waves in TT gauge, with angular momentum numbers l=2 (Teukolsky waves), 3 and 4. We demonstrate that the perfectly absorbing boundary condition B_L of order L=l yields no spurious reflections to linear order in perturbation theory. This is in contrast to the lower-order absorbing boundary conditions B_L with L<l, which include the widely used freezing-Psi_0 boundary condition that imposes the vanishing of the Newman-Penrose scalar Psi_0.Comment: 25 pages, 9 figures. Minor clarifications. Final version to appear in Class. Quantum Grav

    Processamento do queijo andino caprino maturado e defumado.

    Get PDF
    bitstream/CNPC-2010/23035/1/cot105.pdfPrática / Processo agropecuário

    Europium-doped NaGd(WO4)2 nanophosphors: synthesis, luminescence and their coating with fluorescein for pH sensing

    Get PDF
    Uniform Eu-doped NaGd(WO4)2 nanophosphors with a spherical shape have been synthesized for the first time by using a wet chemistry method based on a homogeneous precipitation process at low temperature (120 °C) in ethylene glycol/water mixtures. The obtained nanoparticles crystallized into the tetragonal structure and presented polycrystalline character. The europium content in such phosphors has been optimized through the analysis of the luminescence dynamics (lifetime measurements). By coating the Eu3+-doped wolframate based nanoparticles with fluorescein through a layer-by-layer (LbL) approach, a wide range (4¿10) ratiometric pH-sensitive sensor has been developed, which uses the pH insensitive emission of Eu3+ as a reference.Ministerio de Economía y Competitividad MAT2014-54852-RConsejo Superior de Investigaciones Científicas CSIC PIE 201460E005, PIE 201560E056European Union 26722

    Moving black holes via singularity excision

    Get PDF
    We present a singularity excision algorithm appropriate for numerical simulations of black holes moving throughout the computational domain. The method is an extension of the excision procedure previously used to obtain stable simulations of single, non-moving black holes. The excision procedure also shares elements used in recent work to study the dynamics of a scalarfield in the background of a single, boosted black hole. The robustness of our excision method is tested with single black-hole evolutions using a coordinate system in which the coordinate location of the black hole, and thus the excision boundary, moves throughout the computational domain.Comment: 9 pages and 11 figure

    Coalhada caprina dessorada e adicionada de polpa de frutos tropicais.

    Get PDF
    bitstream/item/149865/1/CNPC-2010-Cot116.pd
    corecore