128 research outputs found
Studying genetics of adaptive variation in model organisms: flowering time variation in Arabidopsis lyrata
Arabidopsis thaliana has emerged as a model organism for plant developmental genetics, but it is also now being widely used for population genetic studies. Outcrossing relatives of A. thaliana are likely to provide suitable additional or alternative species for studies of evolutionary and population genetics. We have examined patterns of adaptive flowering time variation in the outcrossing, perennial A. lyrata. In addition, we examine the distribution of variation at marker genes in populations form North America and Europe. The probability of flowering in this species differs between southern and northern populations. Northern populations are much less likely to flower in short than in long days. A significant daylength by region interaction shows that the northern and southern populations respond differently to the daylength. The timing of flowering also differs between populations, and is made shorter by long days, and in some populations, by vernalization. North American and European populations show consistent genetic differentiation over microsatellite and isozyme loci and alcohol dehydrogenase sequences. Thus, the patterns of variation are quite different from those in A. thaliana, where flowering time differences show little relationship to latitude of origin and the genealogical trees of accessions vary depending on the genomic region studied. The genetic architecture of adaptation can be compared in these species with different life historie
Three-grating monolithic phase-mask for the single-order writing of large-period gratings
A new type of achromatic high-efficiency monolithic phase mask is presented. The mask comprises three submicron period diffraction gratings at a single substrate side that create a purely single spatial frequency interferogram of large period. The optical scheme is that of an integrated Mach-Zehnder interferometer where all light circulation functions are performed by diffraction gratings. The paper describes the operation principle of the phase mask, the fabrication process, and its utilization in a write-on-the-fly scheme for the writing of a long, 2 µm-period grating
Liquid phase deposition of polymers on arbitrary shaped surfaces and their suitability for e-beam patterning
We present a straightforward low cost liquid phase deposition method to coat arbitrary-shaped dielectric substrates with uniform electron beam sensitive polymer films. Furthermore, we investigate the use of electron beam lithography to pattern the coated pre-form substrates. The polymers studied are poly-methyl-methacrylate with different molecular weights, poly(methyl methacrylate-co-ethyl acrylate) and methyl methacrylate. The polymer coverage over the whole surface area is shown to be uniform and the thickness of the film dependent on the concentration of the polymer liquid used. As the uniform polymer layer is deposited on non-flat surfaces, we show that with an electron beam various surfaces, e.g. microlens arrays, can be re-patterned accurately with nanoscale features. Furthermore, we show the required dose for electron beam exposure to be dependent on the concentration and on the molecular weight of the polymer used. (Some figures in this article are in colour only in the electronic version
CD34+ cell mobilization, blood graft composition, and posttransplant recovery in myeloma patients compared to non‐Hodgkinʼs lymphoma patients: results of the prospective multicenter GOA study
BACKGROUNDAutologous stem cell transplantation is an established treatment option for patients with multiple myeloma (MM) or non‐Hodgkinʼs lymphoma (NHL).STUDY DESIGN AND METHODSIn this prospective multicenter study, 147 patients with MM were compared with 136 patients with NHL regarding the mobilization and apheresis of blood CD34+ cells, cellular composition of infused blood grafts, posttransplant recovery, and outcome.RESULTSMultiple myeloma patients mobilized CD34+ cells more effectively (6.3 × 106/kg vs. 3.9 × 106/kg, p = 0.001). The proportion of poor mobilizers (peak blood CD34+ cell count 100 days) nonrelapse mortality (NRM; 6% vs. 0%, p = 0.003).CONCLUSIONSNon‐Hodgkinʼs lymphoma and MM patients differ in terms of mobilization of CD34+ cells, graft cellular composition, and posttransplant recovery. Thus, the optimal graft characteristics may also be different.</p
A High Resolution Genetic Map Anchoring Scaffolds of the Sequenced Watermelon Genome
As part of our ongoing efforts to sequence and map the watermelon (Citrullus spp.) genome, we have constructed a high density genetic linkage map. The map positioned 234 watermelon genome sequence scaffolds (an average size of 1.41 Mb) that cover about 330 Mb and account for 93.5% of the 353 Mb of the assembled genomic sequences of the elite Chinese watermelon line 97103 (Citrullus lanatus var. lanatus). The genetic map was constructed using an F8 population of 103 recombinant inbred lines (RILs). The RILs are derived from a cross between the line 97103 and the United States Plant Introduction (PI) 296341-FR (C. lanatus var. citroides) that contains resistance to fusarium wilt (races 0, 1, and 2). The genetic map consists of eleven linkage groups that include 698 simple sequence repeat (SSR), 219 insertion-deletion (InDel) and 36 structure variation (SV) markers and spans ∼800 cM with a mean marker interval of 0.8 cM. Using fluorescent in situ hybridization (FISH) with 11 BACs that produced chromosome-specifc signals, we have depicted watermelon chromosomes that correspond to the eleven linkage groups constructed in this study. The high resolution genetic map developed here should be a useful platform for the assembly of the watermelon genome, for the development of sequence-based markers used in breeding programs, and for the identification of genes associated with important agricultural traits
Local-Scale Patterns of Genetic Variability, Outcrossing, and Spatial Structure in Natural Stands of Arabidopsis thaliana
As Arabidopsis thaliana is increasingly employed in evolutionary and ecological studies, it is essential to understand patterns of natural genetic variation and the forces that shape them. Previous work focusing mostly on global and regional scales has demonstrated the importance of historical events such as long-distance migration and colonization. Far less is known about the role of contemporary factors or environmental heterogeneity in generating diversity patterns at local scales. We sampled 1,005 individuals from 77 closely spaced stands in diverse settings around Tübingen, Germany. A set of 436 SNP markers was used to characterize genome-wide patterns of relatedness and recombination. Neighboring genotypes often shared mosaic blocks of alternating marker identity and divergence. We detected recent outcrossing as well as stretches of residual heterozygosity in largely homozygous recombinants. As has been observed for several other selfing species, there was considerable heterogeneity among sites in diversity and outcrossing, with rural stands exhibiting greater diversity and heterozygosity than urban stands. Fine-scale spatial structure was evident as well. Within stands, spatial structure correlated negatively with observed heterozygosity, suggesting that the high homozygosity of natural A. thaliana may be partially attributable to nearest-neighbor mating of related individuals. The large number of markers and extensive local sampling employed here afforded unusual power to characterize local genetic patterns. Contemporary processes such as ongoing outcrossing play an important role in determining distribution of genetic diversity at this scale. Local “outcrossing hotspots” appear to reshuffle genetic information at surprising rates, while other stands contribute comparatively little. Our findings have important implications for sampling and interpreting diversity among A. thaliana accessions
Polymorphisms in the Estrogen Receptor 1 and Vitamin C and Matrix Metalloproteinase Gene Families Are Associated with Susceptibility to Lymphoma
BACKGROUND: Non-Hodgkin lymphoma (NHL) is the fifth most common cancer in the U.S. and few causes have been identified. Genetic association studies may help identify environmental risk factors and enhance our understanding of disease mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: 768 coding and haplotype tagging SNPs in 146 genes were examined using Illumina GoldenGate technology in a large population-based case-control study of NHL in the San Francisco Bay Area (1,292 cases 1,375 controls are included here). Statistical analyses were restricted to HIV- participants of white non-Hispanic origin. Genes involved in steroidogenesis, immune function, cell signaling, sunlight exposure, xenobiotic metabolism/oxidative stress, energy balance, and uptake and metabolism of cholesterol, folate and vitamin C were investigated. Sixteen SNPs in eight pathways and nine haplotypes were associated with NHL after correction for multiple testing at the adjusted q<0.10 level. Eight SNPs were tested in an independent case-control study of lymphoma in Germany (494 NHL cases and 494 matched controls). Novel associations with common variants in estrogen receptor 1 (ESR1) and in the vitamin C receptor and matrix metalloproteinase gene families were observed. Four ESR1 SNPs were associated with follicular lymphoma (FL) in the U.S. study, with rs3020314 remaining associated with reduced risk of FL after multiple testing adjustments [odds ratio (OR) = 0.42, 95% confidence interval (CI) = 0.23-0.77) and replication in the German study (OR = 0.24, 95% CI = 0.06-0.94). Several SNPs and haplotypes in the matrix metalloproteinase-3 (MMP3) and MMP9 genes and in the vitamin C receptor genes, solute carrier family 23 member 1 (SLC23A1) and SLC23A2, showed associations with NHL risk. CONCLUSIONS/SIGNIFICANCE: Our findings suggest a role for estrogen, vitamin C and matrix metalloproteinases in the pathogenesis of NHL that will require further validation
A physical map of Brassica oleracea shows complexity of chromosomal changes following recursive paleopolyploidizations
<p>Abstract</p> <p>Background</p> <p>Evolution of the Brassica species has been recursively affected by polyploidy events, and comparison to their relative, <it>Arabidopsis thaliana</it>, provides means to explore their genomic complexity.</p> <p>Results</p> <p>A genome-wide physical map of a rapid-cycling strain of <it>B. oleracea </it>was constructed by integrating high-information-content fingerprinting (HICF) of Bacterial Artificial Chromosome (BAC) clones with hybridization to sequence-tagged probes. Using 2907 contigs of two or more BACs, we performed several lines of comparative genomic analysis. Interspecific DNA synteny is much better preserved in euchromatin than heterochromatin, showing the qualitative difference in evolution of these respective genomic domains. About 67% of contigs can be aligned to the Arabidopsis genome, with 96.5% corresponding to euchromatic regions, and 3.5% (shown to contain repetitive sequences) to pericentromeric regions. Overgo probe hybridization data showed that contigs aligned to Arabidopsis euchromatin contain ~80% of low-copy-number genes, while genes with high copy number are much more frequently associated with pericentromeric regions. We identified 39 interchromosomal breakpoints during the diversification of <it>B. oleracea </it>and <it>Arabidopsis thaliana</it>, a relatively high level of genomic change since their divergence. Comparison of the <it>B. oleracea </it>physical map with Arabidopsis and other available eudicot genomes showed appreciable 'shadowing' produced by more ancient polyploidies, resulting in a web of relatedness among contigs which increased genomic complexity.</p> <p>Conclusions</p> <p>A high-resolution genetically-anchored physical map sheds light on Brassica genome organization and advances positional cloning of specific genes, and may help to validate genome sequence assembly and alignment to chromosomes.</p> <p>All the physical mapping data is freely shared at a WebFPC site (<url>http://lulu.pgml.uga.edu/fpc/WebAGCoL/brassica/WebFPC/</url>; Temporarily password-protected: account: pgml; password: 123qwe123.</p
Patterns of Polymorphism and Demographic History in Natural Populations of Arabidopsis lyrata
Many of the processes affecting genetic diversity act on local populations. However, studies of plant nucleotide diversity have largely ignored local sampling, making it difficult to infer the demographic history of populations and to assess the importance of local adaptation. Arabidopsis lyrata, a self-incompatible, perennial species with a circumpolar distribution, is an excellent model system in which to study the roles of demographic history and local adaptation in patterning genetic variation.We studied nucleotide diversity in six natural populations of Arabidopsis lyrata, using 77 loci sampled from 140 chromosomes. The six populations were highly differentiated, with a median FST of 0.52, and structure analysis revealed no evidence of admixed individuals. Average within-population diversity varied among populations, with the highest diversity found in a German population; this population harbors 3-fold higher levels of silent diversity than worldwide samples of A. thaliana. All A. lyrata populations also yielded positive values of Tajima's D. We estimated a demographic model for these populations, finding evidence of population divergence over the past 19,000 to 47,000 years involving non-equilibrium demographic events that reduced the effective size of most populations. Finally, we used the inferred demographic model to perform an initial test for local adaptation and identified several genes, including the flowering time gene FCA and a disease resistance locus, as candidates for local adaptation events.Our results underscore the importance of population-specific, non-equilibrium demographic processes in patterning diversity within A. lyrata. Moreover, our extensive dataset provides an important resource for future molecular population genetic studies of local adaptation in A. lyrata
- …