49 research outputs found

    Direct In Vivo Cell Lineage Analysis in the Retrorsine and 2AAF Models of Liver Injury after Genetic Labeling in Adult and Newborn Rats

    Get PDF
    BACKGROUNDS AND AIMS:When hepatocyte proliferation is impaired, liver regeneration proceeds from the division of non parenchymal hepatocyte progenitors. Oval cells and Small Hepatocyte-like Progenitor Cells (SHPCs) represent the two most studied examples of such epithelial cells with putative stem cell capacity. In the present study we wished to compare the origin of SHPCs proliferating after retrorsine administration to the one of oval cells observed after 2-Acetyl-Amino fluorene (2-AAF) treatment. METHODOLOGY/PRINCIPAL FINDINGS:We used retroviral-mediated nlslacZ genetic labeling of dividing cells to study the fate of cells in the liver. Labeling was performed either in adult rats before treatment or in newborn animals. Labeled cells were identified and characterised by immunohistochemistry. In adult-labeled animals, labeling was restricted to mature hepatocytes. Retrorsine treatment did not modify the overall number of labeled cells in the liver whereas after 2-AAF administration unlabeled oval cells were recorded and the total number of labeled cells decreased significantly. When labeling was performed in newborn rats, results after retrorsine administration were identical to those obtained in adult-labeled rats. In contrast, in the 2-AAF regimen numerous labeled oval cells were present and were able to generate new labeled hepatocytes. Furthermore, we also observed labeled biliary tracts in 2-AAF treated rats. CONCLUSIONS:Our results strongly suggest that SHPCs are derived from hepatocytes and we confirm that SHPCs and oval cells do not share the same origin. We also show that hepatic progenitors are labeled in newborn rats suggesting future directions for in vivo lineage studies

    In Vivo Delivery of Gremlin siRNA Plasmid Reveals Therapeutic Potential against Diabetic Nephropathy by Recovering Bone Morphogenetic Protein-7

    Get PDF
    Diabetic nephropathy is a complex and poorly understood disease process, and our current treatment options are limited. It remains critical, then, to identify novel therapeutic targets. Recently, a developmental protein and one of the bone morphogenetic protein antagonists, Gremlin, has emerged as a novel modulator of diabetic nephropathy. The high expression and strong co-localization with transforming growth factor- Ξ²1 in diabetic kidneys suggests a role for Gremlin in the pathogenesis of diabetic nephropathy. We have constructed a gremlin siRNA plasmid and have examined the effect of Gremlin inhibition on the progression of diabetic nephropathy in a mouse model. CD-1 mice underwent uninephrectomy and STZ treatment prior to receiving weekly injections of the plasmid. Inhibition of Gremlin alleviated proteinuria and renal collagen IV accumulation 12 weeks after the STZ injection and inhibited renal cell proliferation and apoptosis. In vitro experiments, using mouse mesangial cells, revealed that the transfect ion of gremlin siRNA plasmid reversed high glucose induced abnormalities, such as increased cell proliferation and apoptosis and increased collagen IV production. The decreased matrix metalloprotease level was partially normalized by transfection with gremlin siRNA plasmid. Additionally, we observed recovery of bone morphogenetic protein-7 signaling activity, evidenced by increases in phosphorylated Smad 5 protein levels. We conclude that inhibition of Gremlin exerts beneficial effects on the diabetic kidney mainly through maintenance of BMP-7 activity and that Gremlin may serve as a novel therapeutic target in the management of diabetic nephropathy

    From lamins to lamina: a structural perspective

    Full text link
    Lamin proteins are the major constituents of the nuclear lamina, a proteinaceous network that lines the inner nuclear membrane. Primarily, the nuclear lamina provides structural support for the nucleus and the nuclear envelope; however, lamins and their associated proteins are also involved in most of the nuclear processes, including DNA replication and repair, regulation of gene expression, and signaling. Mutations in human lamin A and associated proteins were found to cause a large number of diseases, termed 'laminopathies.' These diseases include muscular dystrophies, lipodystrophies, neuropathies, and premature aging syndromes. Despite the growing number of studies on lamins and their associated proteins, the molecular organization of lamins in health and disease is still elusive. Likewise, there is no comprehensive view how mutations in lamins result in a plethora of diseases, selectively affecting different tissues. Here, we discuss some of the structural aspects of lamins and the nuclear lamina organization, in light of recent results

    Peracetic acid: A practical agent for sterilizing heat-labile polymeric tissue-engineering scaffolds

    No full text
    Advanced biomaterials and sophisticated processing technologies aim at fabricating tissue-engineering scaffolds that can predictably interact within a biological environment at the cellular level. Sterilization of such scaffolds is at the core of patient safety and is an important regulatory issue that needs to be addressed before clinical translation. In addition, it is crucial that meticulously engineered micro-and nano-structures are preserved after sterilization. Conventional sterilization methods involving heat, steam, and radiation are not compatible with engineered polymeric systems because of scaffold degradation and loss of architecture. Using electrospun scaffolds made from polycaprolactone, a low melting polymer, and employing spores of Bacillus atrophaeus as biological indicators, we compared ethylene oxide, autoclaving and 80% ethanol to a known chemical sterilant, peracetic acid (PAA), for their ability to sterilize as well as their effects on scaffold properties. PAA diluted in 20% ethanol to 1000?ppm or above sterilized electrospun scaffolds in 15?min at room temperature while maintaining nano-architecture and mechanical properties. Scaffolds treated with PAA at 5000ppm were rendered hydrophilic, with contact angles reduced to 0Β°. Therefore, PAA can provide economical, rapid, and effective sterilization of heat-sensitive polymeric electrospun scaffolds that are used in tissue engineering

    How to apply for and secure EU funding for collaborative IBD research projects

    No full text
    The European Union offers opportunities for high-level of funding of collaborative European research. Calls are regularly published: after the end of the FP7 funding programme the new round of Horizon 2020 calls started in 2015. Several topics are relevant to inflammatory bowel disease (IBD) challenges, including chronic disease management, biomarker discovery and new treatments developments. The aim of this Viewpoint article is to describe the new Horizon 2020 instrument and the project submission procedures, and to highlight these through the description of tips and tricks, taking advantage of four examples of successful projects in the field of IBD: the SADEL, IBD-BIOM, IBD Character and BIOCYCLE projects
    corecore