121 research outputs found
Floppy modes and non-affine deformations in random fiber networks
We study the elasticity of random fiber networks. Starting from a microscopic
picture of the non-affine deformation fields we calculate the macroscopic
elastic moduli both in a scaling theory and a self-consistent effective medium
theory. By relating non-affinity to the low-energy excitations of the network
(``floppy-modes'') we achieve a detailed characterization of the non-affine
deformations present in fibrous networks.Comment: 4 pages, 2 figures, new figure
Filamin cross-linked semiflexible networks: Fragility under strain
The semiflexible F-actin network of the cytoskeleton is cross-linked by a
variety of proteins including filamin, which contain Ig-domains that unfold
under applied tension. We examine a simple semiflexible network model
cross-linked by such unfolding linkers that captures the main mechanical
features of F-actin networks cross-linked by filamin proteins and show that
under sufficiently high strain the network spontaneously self-organizes so that
an appreciable fraction of the filamin cross-linkers are at the threshold of
domain unfolding. We propose an explanation of this organization based on a
mean-field model and suggest a qualitative experimental signature of this type
of network reorganization under applied strain that may be observable in
intracellular microrheology experiments of Crocker et al.Comment: 4 Pages, 3 figures, Revtex4, submitted to PR
Stiff Polymers, Foams and Fiber Networks
We study the elasticity of fibrous materials composed of generalized stiff
polymers. It is shown that in contrast to cellular foam-like structures affine
strain fields are generically unstable. Instead, a subtle interplay between the
architecture of the network and the elastic properties of its building blocks
leads to intriguing mechanical properties with intermediate asymptotic scaling
regimes. We present exhaustive numerical studies based on a finite element
method complemented by scaling arguments.Comment: 4 pages, 5 figure
Unfolding cross-linkers as rheology regulators in F-actin networks
We report on the nonlinear mechanical properties of a statistically
homogeneous, isotropic semiflexible network cross-linked by polymers containing
numerous small unfolding domains, such as the ubiquitous F-actin cross-linker
Filamin.
We show that the inclusion of such proteins has a dramatic effect on the
large strain behavior of the network. Beyond a strain threshold, which depends
on network density, the unfolding of protein domains leads to bulk shear
softening. Past this critical strain, the network spontaneously organizes
itself so that an appreciable fraction of the Filamin cross-linkers are at the
threshold of domain unfolding. We discuss via a simple mean-field model the
cause of this network organization and suggest that it may be the source of
power-law relaxation observed in in vitro and in intracellular microrheology
experiments. We present data which fully justifies our model for a simplified
network architecture.Comment: 11 pages, 4 figures. to appear in Physical Review
Nonaffine rubber elasticity for stiff polymer networks
We present a theory for the elasticity of cross-linked stiff polymer
networks. Stiff polymers, unlike their flexible counterparts, are highly
anisotropic elastic objects. Similar to mechanical beams stiff polymers easily
deform in bending, while they are much stiffer with respect to tensile forces
(``stretching''). Unlike in previous approaches, where network elasticity is
derived from the stretching mode, our theory properly accounts for the soft
bending response. A self-consistent effective medium approach is used to
calculate the macroscopic elastic moduli starting from a microscopic
characterization of the deformation field in terms of ``floppy modes'' --
low-energy bending excitations that retain a high degree of non-affinity. The
length-scale characterizing the emergent non-affinity is given by the ``fiber
length'' , defined as the scale over which the polymers remain straight.
The calculated scaling properties for the shear modulus are in excellent
agreement with the results of recent simulations obtained in two-dimensional
model networks. Furthermore, our theory can be applied to rationalize bulk
rheological data in reconstituted actin networks.Comment: 12 pages, 10 figures, revised Section II
MASTRO I: Meta-Analysis and Systematic Review of Thrombectomy Stent Retriever Outcomes: Comparing Functional, Safety and Recanalization Outcomes Between EmboTrap, Solitaire and Trevo in Acute Ischemic Stroke
Aims:
Stent-retriever (SR) thrombectomy has demonstrated superior outcomes in patients with acute ischemic stroke compared with medical management alone, but differences among SRs remain unexplored. We conducted a Systematic Review/Meta-Analysis to compare outcomes between three SRs: EmboTrap®, Solitaire™, and Trevo®. Methods:
We conducted a PRISMA-compliant Systematic Review among English-language studies published after 2014 in PubMed/MEDLINE that reported SRs in ≥25 patients. Functional and safety outcomes included 90-day modified Rankin scale (mRS 0-2), mortality, symptomatic intracranial hemorrhage (sICH), and embolization to new territory (ENT). Recanalization outcomes included modified thrombolysis in cerebral infarction (mTICI) and first-pass recanalization (FPR). We used a random effects Meta-Analysis to compare outcomes; subgroup and outlier-influencer analysis were performed to explore heterogeneity. Results:
Fifty-one articles comprising 9,804 patients were included. EmboTrap had statistically significantly higher rates of mRS 0-2 (57.4%) compared with Trevo (50.0%, p = 0.013) and Solitaire (45.3%, p \u3c 0.001). Compared with Solitaire (20.4%), EmboTrap (11.2%, p \u3c 0.001) and Trevo (14.5%, p = 0.018) had statistically significantly lower mortality. Compared with Solitaire (7.7%), EmboTrap (3.9%, p = 0.028) and Trevo (4.6%, p = 0.049) had statistically significantly lower rates of sICH. There were no significant differences in ENT rates across all three devices (6.0% for EmboTrap, 5.3% for Trevo, and 7.7% for Solitaire, p = 0.518). EmboTrap had numerically higher rates of recanalization; however, no statistically significant differences were found. Conclusion:
The results of our Systematic Review/Meta-Analysis suggest that EmboTrap may be associated with significantly improved functional outcomes compared with Solitaire and Trevo. EmboTrap and Trevo may be associated with significantly lower rates of sICH and mortality compared with Solitaire. No significant differences in recanalization and ENT rates were found. These conclusions are tempered by limitations of the analysis including variations in thrombectomy techniques in the field, highlighting the need for multi-arm RCT studies comparing different SR devices to confirm our findings
Porous structure of thick fiber webs
The bulk properties and stochastic pore geometry of finite-thickness fiber webs are studied using a realistic model for the sedimentation of flexible fibers [K. J. Niskanen and M. J. Alava, Phys. Rev. Lett. 73, 3475 (1994)]. The resulting web structure is controlled by a dimensionless number F=Tfwf/tf, where Tf is fiber flexibility, wf fiber width, and tf fiber thickness. The fiber length (≫wf,tf) is irrelevant. With increasing coverage c̄, a crossover occurs at c̄=c0≈1+2F from a vacancy-controlled two-dimensional (2D) structure to a pore-controlled 3D structure. The 3D structures are isomorphic in that the pore dimensions are exponentially distributed, with the decay rate dependent only on F.Peer reviewe
Mechanical properties of nanotube sheets: Alterations in joint morphology and achievable moduli in manufacturable materials
Nanotube sheets, or “bucky papers,” have been proposed for use in actuating, structural and electrochemical systems, based in part on their potential mechanical properties. Here, we present results of detailed simulations of networks of nanotubes/ropes, with special emphasis on the effect of joint morphology. We perform detailed simulations of three-dimensional joint deformation, and use the results to inform simulations of two-dimensional (2D) networks with intertube connections represented by torsion springs. Upper bounds are established on moduli of nanotube sheets, using the 2D Euler beam-network simulations. Comparisons of experimental and simulated response for HiPco-nanotube and laser-ablated nanotube sheets, indicate that ∼2–30-fold increases in moduli may be achievable in these materials. Increasing the numbers of interrope connections appears to be the best target for improving nanotube sheet stiffnesses in materials containing straight segments. © 2004 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70283/2/JAPIAU-95-8-4335-1.pd
Kypho-IORT - a novel approach of intraoperative radiotherapy during kyphoplasty for vertebral metastases
<p>Abstract</p> <p>Background</p> <p>Instable and painful vertebral metastases in patients with progressive visceral metastases present a common therapeutic dilemma. We developed a novel approach to deliver intraoperative radiotherapy (IORT) during kyphoplasty and report the first treated case.</p> <p>Methods/Results</p> <p>60 year old patient with metastasizing breast cancer under chemotherapy presented with a newly diagnosed painful metastasis in the 12<sup>th </sup>thoracic vertebra. Under general anaesthesia, a bipedicular approach into the vertebra was chosen with insertion of specially designed metallic sleeves to guide the electron drift tube of the miniature X-ray generator (INTRABEAM, Carl Zeiss Surgical, Oberkochen, Germany). This was inserted with a novel sheet designed for this approach protecting the drift tube. A radiation dose of 8 Gy in 5 mm distance (50 kV X-rays) was delivered. The kyphoplasty balloons (KyphX, Kyphon Inc, Sunnyvale) were inflated after IORT and polymethylmethacrylate cement was injected. The whole procedure lasted less than 90 minutes.</p> <p>Conclusion</p> <p>In conclusion, this novel, minimally invasive procedure can be performed in standard operating rooms and may become a valuable option for patients with vertebral metastases providing immediate stability and local control. A phase I/II study is under way to establish the optimal dose prescription.</p
- …