2,630 research outputs found

    Cosmological Perturbations in Renormalization Group Derived Cosmologies

    Get PDF
    A linear cosmological perturbation theory of an almost homogeneous and isotropic perfect fluid Universe with dynamically evolving Newton constant GG and cosmological constant Λ\Lambda is presented. A gauge-invariant formalism is developed by means of the covariant approach, and the acoustic propagation equations governing the evolution of the comoving fractional spatial gradients of the matter density, GG, and Λ\Lambda are thus obtained. Explicit solutions are discussed in cosmologies where both GG and Λ\Lambda vary according to renormalization group equations in the vicinity of a fixed point.Comment: 22 pages, revtex, subeqn.sty, to appear on IJMP

    Renormalization group improved gravitational actions: a Brans-Dicke approach

    Full text link
    A new framework for exploiting information about the renormalization group (RG) behavior of gravity in a dynamical context is discussed. The Einstein-Hilbert action is RG-improved by replacing Newton's constant and the cosmological constant by scalar functions in the corresponding Lagrangian density. The position dependence of GG and Λ\Lambda is governed by a RG equation together with an appropriate identification of RG scales with points in spacetime. The dynamics of the fields GG and Λ\Lambda does not admit a Lagrangian description in general. Within the Lagrangian formalism for the gravitational field they have the status of externally prescribed ``background'' fields. The metric satisfies an effective Einstein equation similar to that of Brans-Dicke theory. Its consistency imposes severe constraints on allowed backgrounds. In the new RG-framework, GG and Λ\Lambda carry energy and momentum. It is tested in the setting of homogeneous-isotropic cosmology and is compared to alternative approaches where the fields GG and Λ\Lambda do not carry gravitating 4-momentum. The fixed point regime of the underlying RG flow is studied in detail.Comment: LaTeX, 72 pages, no figure

    Running Gauge Coupling in Asymptotically Safe Quantum Gravity

    Full text link
    We investigate the non-perturbative renormalization group behavior of the gauge coupling constant using a truncated form of the functional flow equation for the effective average action of the Yang-Mills-gravity system. We find a non-zero quantum gravity correction to the standard Yang-Mills beta function which has the same sign as the gauge boson contribution. Our results fit into the picture according to which Quantum Einstein Gravity (QEG) is asymptotically safe, with a vanishing gauge coupling constant at the non-trivial fixed point.Comment: 27 page

    On the Possibility of Quantum Gravity Effects at Astrophysical Scales

    Get PDF
    The nonperturbative renormalization group flow of Quantum Einstein Gravity (QEG) is reviewed. It is argued that at large distances there could be strong renormalization effects, including a scale dependence of Newton's constant, which mimic the presence of dark matter at galactic and cosmological scales.Comment: LaTeX, 18 pages, 4 figures. Invited contribution to the Int. J. Mod. Phys. D special issue on dark matter and dark energ

    The role of Background Independence for Asymptotic Safety in Quantum Einstein Gravity

    Full text link
    We discuss various basic conceptual issues related to coarse graining flows in quantum gravity. In particular the requirement of background independence is shown to lead to renormalization group (RG) flows which are significantly different from their analogs on a rigid background spacetime. The importance of these findings for the asymptotic safety approach to Quantum Einstein Gravity (QEG) is demonstrated in a simplified setting where only the conformal factor is quantized. We identify background independence as a (the ?) key prerequisite for the existence of a non-Gaussian RG fixed point and the renormalizability of QEG.Comment: 2 figures. Talk given by M.R. at the WE-Heraeus-Seminar "Quantum Gravity: Challenges and Perspectives", Bad Honnef, April 14-16, 2008; to appear in General Relativity and Gravitatio

    Fractal space-times under the microscope: A Renormalization Group view on Monte Carlo data

    Full text link
    The emergence of fractal features in the microscopic structure of space-time is a common theme in many approaches to quantum gravity. In this work we carry out a detailed renormalization group study of the spectral dimension dsd_s and walk dimension dwd_w associated with the effective space-times of asymptotically safe Quantum Einstein Gravity (QEG). We discover three scaling regimes where these generalized dimensions are approximately constant for an extended range of length scales: a classical regime where ds=d,dw=2d_s = d, d_w = 2, a semi-classical regime where ds=2d/(2+d),dw=2+dd_s = 2d/(2+d), d_w = 2+d, and the UV-fixed point regime where ds=d/2,dw=4d_s = d/2, d_w = 4. On the length scales covered by three-dimensional Monte Carlo simulations, the resulting spectral dimension is shown to be in very good agreement with the data. This comparison also provides a natural explanation for the apparent puzzle between the short distance behavior of the spectral dimension reported from Causal Dynamical Triangulations (CDT), Euclidean Dynamical Triangulations (EDT), and Asymptotic Safety.Comment: 26 pages, 6 figure

    Is Quantum Einstein Gravity Nonperturbatively Renormalizable?

    Get PDF
    We find considerable evidence supporting the conjecture that four-dimensional Quantum Einstein Gravity is ``asymptotically safe'' in Weinberg's sense. This would mean that the theory is likely to be nonperturbatively renormalizable and thus could be considered a fundamental (rather than merely effective) theory which is mathematically consistent and predictive down to arbitrarily small length scales. For a truncated version of the exact flow equation of the effective average action we establish the existence of a non-Gaussian renormalization group fixed point which is suitable for the construction of a nonperturbative infinite cutoff-limit. The truncation ansatz includes the Einstein-Hilbert action and a higher derivative term.Comment: 18 pages, latex, 3 figure

    Scale-dependent metric and causal structures in Quantum Einstein Gravity

    Full text link
    Within the asymptotic safety scenario for gravity various conceptual issues related to the scale dependence of the metric are analyzed. The running effective field equations implied by the effective average action of Quantum Einstein Gravity (QEG) and the resulting families of resolution dependent metrics are discussed. The status of scale dependent vs. scale independent diffeomorphisms is clarified, and the difference between isometries implemented by scale dependent and independent Killing vectors is explained. A concept of scale dependent causality is proposed and illustrated by various simple examples. The possibility of assigning an "intrinsic length" to objects in a QEG spacetime is also discussed.Comment: 52 page

    Thermal Treatments of AlSi10Mg Processed by Laser Beam Melting

    Get PDF
    Recent studies have shown that AlSi10Mg processed by Laser Beam Melting (LBM) exhibits a much finer microstructure when compared to its cast counterpart as a consequence of the much faster cooling rates imposed in the LBM process. Such microstructural refinement causes a significant increase in strength and hardness, to such an extent that as-fabricated LBM AlSi10Mg was reported to present hardness value of 127 ± 3 Hv0.5, similar to the hardness of high pressure die cast AlSi10Mg in the aged condition (i.e. 130-133 Hv). Yet, little attention has been given so far to the influence of thermal treatments on the microstructure and mechanical behavior of LBM AlSi10Mg. The present work hence aims to investigate the effect of two different types of heat treatments – i.e. (i) stress relief and (ii) solutionizing and ageing − on the microstructure, hardness and tensile properties of LBM AlSi10Mg.Mechanical Engineerin

    A Minimal Length from the Cutoff Modes in Asymptotically Safe Quantum Gravity

    Full text link
    Within asymptotically safe Quantum Einstein Gravity (QEG), the quantum 4-sphere is discussed as a specific example of a fractal spacetime manifold. The relation between the infrared cutoff built into the effective average action and the corresponding coarse graining scale is investigated. Analyzing the properties of the pertinent cutoff modes, the possibility that QEG generates a minimal length scale dynamically is explored. While there exists no minimal proper length, the QEG sphere appears to be "fuzzy" in the sense that there is a minimal angular separation below which two points cannot be resolved by the cutoff modes.Comment: 26 pages, 1 figur
    corecore