2,630 research outputs found
Cosmological Perturbations in Renormalization Group Derived Cosmologies
A linear cosmological perturbation theory of an almost homogeneous and
isotropic perfect fluid Universe with dynamically evolving Newton constant
and cosmological constant is presented. A gauge-invariant formalism
is developed by means of the covariant approach, and the acoustic propagation
equations governing the evolution of the comoving fractional spatial gradients
of the matter density, , and are thus obtained. Explicit solutions
are discussed in cosmologies where both and vary according to
renormalization group equations in the vicinity of a fixed point.Comment: 22 pages, revtex, subeqn.sty, to appear on IJMP
Renormalization group improved gravitational actions: a Brans-Dicke approach
A new framework for exploiting information about the renormalization group
(RG) behavior of gravity in a dynamical context is discussed. The
Einstein-Hilbert action is RG-improved by replacing Newton's constant and the
cosmological constant by scalar functions in the corresponding Lagrangian
density. The position dependence of and is governed by a RG
equation together with an appropriate identification of RG scales with points
in spacetime. The dynamics of the fields and does not admit a
Lagrangian description in general. Within the Lagrangian formalism for the
gravitational field they have the status of externally prescribed
``background'' fields. The metric satisfies an effective Einstein equation
similar to that of Brans-Dicke theory. Its consistency imposes severe
constraints on allowed backgrounds. In the new RG-framework, and
carry energy and momentum. It is tested in the setting of homogeneous-isotropic
cosmology and is compared to alternative approaches where the fields and
do not carry gravitating 4-momentum. The fixed point regime of the
underlying RG flow is studied in detail.Comment: LaTeX, 72 pages, no figure
Running Gauge Coupling in Asymptotically Safe Quantum Gravity
We investigate the non-perturbative renormalization group behavior of the
gauge coupling constant using a truncated form of the functional flow equation
for the effective average action of the Yang-Mills-gravity system. We find a
non-zero quantum gravity correction to the standard Yang-Mills beta function
which has the same sign as the gauge boson contribution. Our results fit into
the picture according to which Quantum Einstein Gravity (QEG) is asymptotically
safe, with a vanishing gauge coupling constant at the non-trivial fixed point.Comment: 27 page
On the Possibility of Quantum Gravity Effects at Astrophysical Scales
The nonperturbative renormalization group flow of Quantum Einstein Gravity
(QEG) is reviewed. It is argued that at large distances there could be strong
renormalization effects, including a scale dependence of Newton's constant,
which mimic the presence of dark matter at galactic and cosmological scales.Comment: LaTeX, 18 pages, 4 figures. Invited contribution to the Int. J. Mod.
Phys. D special issue on dark matter and dark energ
The role of Background Independence for Asymptotic Safety in Quantum Einstein Gravity
We discuss various basic conceptual issues related to coarse graining flows
in quantum gravity. In particular the requirement of background independence is
shown to lead to renormalization group (RG) flows which are significantly
different from their analogs on a rigid background spacetime. The importance of
these findings for the asymptotic safety approach to Quantum Einstein Gravity
(QEG) is demonstrated in a simplified setting where only the conformal factor
is quantized. We identify background independence as a (the ?) key prerequisite
for the existence of a non-Gaussian RG fixed point and the renormalizability of
QEG.Comment: 2 figures. Talk given by M.R. at the WE-Heraeus-Seminar "Quantum
Gravity: Challenges and Perspectives", Bad Honnef, April 14-16, 2008; to
appear in General Relativity and Gravitatio
Fractal space-times under the microscope: A Renormalization Group view on Monte Carlo data
The emergence of fractal features in the microscopic structure of space-time
is a common theme in many approaches to quantum gravity. In this work we carry
out a detailed renormalization group study of the spectral dimension and
walk dimension associated with the effective space-times of
asymptotically safe Quantum Einstein Gravity (QEG). We discover three scaling
regimes where these generalized dimensions are approximately constant for an
extended range of length scales: a classical regime where , a
semi-classical regime where , and the UV-fixed point
regime where . On the length scales covered by
three-dimensional Monte Carlo simulations, the resulting spectral dimension is
shown to be in very good agreement with the data. This comparison also provides
a natural explanation for the apparent puzzle between the short distance
behavior of the spectral dimension reported from Causal Dynamical
Triangulations (CDT), Euclidean Dynamical Triangulations (EDT), and Asymptotic
Safety.Comment: 26 pages, 6 figure
Is Quantum Einstein Gravity Nonperturbatively Renormalizable?
We find considerable evidence supporting the conjecture that four-dimensional
Quantum Einstein Gravity is ``asymptotically safe'' in Weinberg's sense. This
would mean that the theory is likely to be nonperturbatively renormalizable and
thus could be considered a fundamental (rather than merely effective) theory
which is mathematically consistent and predictive down to arbitrarily small
length scales. For a truncated version of the exact flow equation of the
effective average action we establish the existence of a non-Gaussian
renormalization group fixed point which is suitable for the construction of a
nonperturbative infinite cutoff-limit. The truncation ansatz includes the
Einstein-Hilbert action and a higher derivative term.Comment: 18 pages, latex, 3 figure
Scale-dependent metric and causal structures in Quantum Einstein Gravity
Within the asymptotic safety scenario for gravity various conceptual issues
related to the scale dependence of the metric are analyzed. The running
effective field equations implied by the effective average action of Quantum
Einstein Gravity (QEG) and the resulting families of resolution dependent
metrics are discussed. The status of scale dependent vs. scale independent
diffeomorphisms is clarified, and the difference between isometries implemented
by scale dependent and independent Killing vectors is explained. A concept of
scale dependent causality is proposed and illustrated by various simple
examples. The possibility of assigning an "intrinsic length" to objects in a
QEG spacetime is also discussed.Comment: 52 page
Thermal Treatments of AlSi10Mg Processed by Laser Beam Melting
Recent studies have shown that AlSi10Mg processed by Laser Beam Melting (LBM)
exhibits a much finer microstructure when compared to its cast counterpart as a consequence of
the much faster cooling rates imposed in the LBM process. Such microstructural refinement
causes a significant increase in strength and hardness, to such an extent that as-fabricated LBM
AlSi10Mg was reported to present hardness value of 127 ± 3 Hv0.5, similar to the hardness of
high pressure die cast AlSi10Mg in the aged condition (i.e. 130-133 Hv). Yet, little attention has
been given so far to the influence of thermal treatments on the microstructure and mechanical
behavior of LBM AlSi10Mg. The present work hence aims to investigate the effect of two
different types of heat treatments – i.e. (i) stress relief and (ii) solutionizing and ageing − on the
microstructure, hardness and tensile properties of LBM AlSi10Mg.Mechanical Engineerin
A Minimal Length from the Cutoff Modes in Asymptotically Safe Quantum Gravity
Within asymptotically safe Quantum Einstein Gravity (QEG), the quantum
4-sphere is discussed as a specific example of a fractal spacetime manifold.
The relation between the infrared cutoff built into the effective average
action and the corresponding coarse graining scale is investigated. Analyzing
the properties of the pertinent cutoff modes, the possibility that QEG
generates a minimal length scale dynamically is explored. While there exists no
minimal proper length, the QEG sphere appears to be "fuzzy" in the sense that
there is a minimal angular separation below which two points cannot be resolved
by the cutoff modes.Comment: 26 pages, 1 figur
- …