1,630 research outputs found

    Locality, Causality and Noncommutative Geometry

    Full text link
    We analyse the causality condition in noncommutative field theory and show that the nonlocality of noncommutative interaction leads to a modification of the light cone to the light wedge. This effect is generic for noncommutative geometry. We also check that the usual form of energy condition is violated and propose that a new form is needed in noncommutative spacetime. On reduction from light cone to light wedge, it looks like the noncommutative dimensions are effectively washed out and suggests a reformulation of noncommutative field theory in terms of lower dimensional degree of freedom. This reduction of dimensions due to noncommutative geometry could play a key role in explaining the holographic property of quantum gravity.Comment: 16 pages, LaTeX, 4 figure

    G/G Models and W_N strings

    Full text link
    We derive the BRST cohomology of the G/G topological model for the case of A^{(1)}_{N-1} . It is shown that at level k={p/q}-N the latter describes the (p,q) W_N minimal model coupled to WNW_N gravity (plus some extra ``topological sectors").Comment: 17 page

    Anisotropy of Resonant Inelastic X-Ray Scattering at the K Edge of Si:Theoretical Analysis

    Full text link
    We investigate theoretically the resonant inelastic x-ray scattering (RIXS) at the KK edge of Si on the basis of an ab initio calculation. We calculate the RIXS spectra with systematically varying transfered-momenta, incident-photon energy and incident-photon polarization. We confirm the anisotropy of the experimental spectra by Y. Ma {\it et al}. (Phys. Rev. Lett. 74, 478 (1995)), providing a quantitative explanation of the spectra.Comment: 18 pages, 11 figure

    Non-Local Effects of Multi-Trace Deformations in the AdS/CFT Correspondence

    Full text link
    The AdS/CFT correspondence relates deformations of the CFT by "multi-trace operators" to "non-local string theories". The deformed theories seem to have non-local interactions in the compact directions of space-time; in the gravity approximation the deformed theories involve modified boundary conditions on the fields which are explicitly non-local in the compact directions. In this note we exhibit a particular non-local property of the resulting space-time theory. We show that in the usual backgrounds appearing in the AdS/CFT correspondence, the commutator of two bulk scalar fields at points with a large enough distance between them in the compact directions and a small enough time-like distance between them in AdS vanishes, but this is not always true in the deformed theories. We discuss how this is consistent with causality.Comment: 24 pages, 6 figures, 2 appendices. v2: added reference

    Non-BPS Solutions of the Noncommutative CP^1 Model in 2+1 Dimensions

    Full text link
    We find non-BPS solutions of the noncommutative CP^1 model in 2+1 dimensions. These solutions correspond to soliton anti-soliton configurations. We show that the one-soliton one-anti-soliton solution is unstable when the distance between the soliton and the anti-soliton is small. We also construct time-dependent solutions and other types of solutions.Comment: 11 pages, minor correction

    D0−Dˉ0D^0 - \bar D^0 Mixing in the Presence of Isosinglet Quarks

    Full text link
    We analyse ΔC=2\Delta C=2 transitions in the framework of a minimal extension of the Standard Model where either a Q=2/3Q=2/3 or a Q=−1/3Q=-1/3 isosinglet quark is added to the standard quark spectrum. In the case of a Q=2/3Q=2/3 isosinglet quark, it is shown that there is a significant region of parameter space where D0−Dˉ0D^0 - \bar D^0 mixing is sufficiently enhanced to be observed at the next round of experiments. On the contrary, in the case of a Q=−1/3Q=-1/3 isosinglet quark, it is pointed out that obtaining a substancial enhancement of D0−Dˉ0D^0 - \bar D^0 mixing, while complying with the experimental constraints on rare kaon decays, requires a contrived choice of parameters.Comment: 10 pages plus four figures. The figures are not included but are available upon reques

    Classical N=2 W-superalgebras From Superpseudodifferential Operators

    Full text link
    We study the supersymmetric Gelfand-Dickey algebras associated with the superpseudodifferential operators of positive as well as negative leading order. We show that, upon the usual constraint, these algebras contain the N=2 super Virasoro algebra as a subalgebra as long as the leading order is odd. The decompositions of the coefficient functions into N=1 primary fields are then obtained by covariantizing the superpseudodifferential operators. We discuss the problem of identifying N=2 supermultiplets and work out a couple of supermultiplets by explicit computations.Comment: 19 pages (Plain TeX), NHCU-HEP-94-1

    The main sequence of star-forming galaxies across cosmic times

    Get PDF
    By compiling a comprehensive census of literature studies, we investigate the evolution of the main sequence (MS) of star-forming galaxies (SFGs) in the widest range of redshift (0 < z < 6) and stellar mass (108.5–1011.5 M☉) ever probed. We convert all observations to a common calibration and find a remarkable consensus on the variation of the MS shape and normalization across cosmic time. The relation exhibits a curvature towards the high stellar masses at all redshifts. The best functional form is governed by two parameters: the evolution of the normalization and the turnover mass (M0(t)), which both evolve as a power law of the Universe age. The turn-over mass determines the MS shape. It marginally evolves with time, making the MS slightly steeper towards z ∌ 4–6. At stellar masses below M0(t), SFGs have a constant specific SFR (sSFR), while above M0(t) the sSFR is suppressed. We find that the MS is dominated by central galaxies. This allows to turn M0(t) into the corresponding host halo mass. This evolves as the halo mass threshold between cold and hot accretion regimes, as predicted by the theory of accretion, where the central galaxy is fed or starved of cold gas supply, respectively. We, thus, argue that the progressive MS bending as a function of the Universe age is caused by the lower availability of cold gas in haloes entering the hot accretion phase, in addition to black hole feedback. We also find qualitatively the same trend in the largest sample of star-forming galaxies provided by the IllustrisTNG simulation. Nevertheless, we still note large quantitative discrepancies with respect to observations, in particular at the high-mass end. These can not be easily ascribed to biases or systematics in the observed SFRs and the derived MS

    The coupling of fermions to the three-dimensional noncommutative CPN−1CP^{N-1} model: minimal and supersymmetric extensions

    Get PDF
    We consider the coupling of fermions to the three-dimensional noncommutative CPN−1CP^{N-1} model. In the case of minimal coupling, although the infrared behavior of the gauge sector is improved, there are dangerous (quadratic) infrared divergences in the corrections to the two point vertex function of the scalar field. However, using superfield techniques we prove that the supersymmetric version of this model with ``antisymmetrized'' coupling of the Lagrange multiplier field is renormalizable up to the first order in 1N\frac{1}{N}. The auxiliary spinor gauge field acquires a nontrivial (nonlocal) dynamics with a generation of Maxwell and Chern-Simons noncommutative terms in the effective action. Up to the 1/N order all divergences are only logarithimic so that the model is free from nonintegrable infrared singularities.Comment: Minor corrections in the text and modifications in the list of reference

    On 4d rank-one N=3 superconformal field theories

    Get PDF
    We study the properties of 4d N=3 superconformal field theories whose rank is one, i.e. those that reduce to a single vector multiplet on their moduli space of vacua. We find that the moduli space can only be of the form C^3/Z_k for k=1,2,3,4,6, and that the supersymmetry automatically enhances to N=4 for k=1,2. In addition, we determine the central charges a and c in terms of k, and construct the associated 2d chiral algebras, which turn out to be exotic N=2 supersymmetric W-algebras.Comment: 24 page
    • 

    corecore