138 research outputs found
Molecular Docking-Based Design and Development of a Highly Selective Probe Substrate for UDP-glucuronosyltransferase 1A10
Intestinal and hepatic glucuronidation by the UDP-glucuronosyltransferases (UGTs) greatly affect the bioavailability of phenolic compounds. UGT1A10 catalyzes glucuronidation reactions in the intestine, but not in the liver. Here, our aim was to develop selective, fluorescent substrates to easily elucidate UGT1A10 function. To this end, homology models were constructed and used to design new substrates, and subsequently, six novel C3-substituted (4-fluorophenyl, 4-hydroxyphenyl, 4-methoxyphenyl, 4-(dimethylamino)phenyl, 4-methylphenyl, or triazole) 7-hydroxycoumarin derivatives were synthesized from inexpensive starting materials. All tested compounds could be glucuronidated to nonfluorescent glucuronides by UGT1A10, four of them highly selectively by this enzyme. A new UGT1A10 mutant, 1A10-H210M, was prepared on the basis of the newly constructed model. Glucuronidation kinetics of the new compounds, in both wild-type and mutant UGT1A10 enzymes, revealed variable effects of the mutation. All six new C3-substituted 7-hydroxycoumarins were glucuronidated faster by human intestine than by liver microsomes, supporting the results obtained with recombinant UGTs. The most selective 4(dimethylamino)phenyl and triazole C3-substituted 7-hydroxycoumarins could be very useful substrates in studying the function and expression of the human UGT1A10.Peer reviewe
Substrate Selectivity of Coumarin Derivatives by Human CYP1 Enzymes: In Vitro Enzyme Kinetics and In Silico Modeling
Of the three enzymes in the human cytochrome P450 family 1, CYP1A2 is an important enzyme mediating metabolism of xenobiotics including drugs in the liver, while CYP1A1 and CYP1B1 are expressed in extrahepatic tissues. Currently used CYP substrates, such as 7-ethoxycoumarin and 7-ethoxyresorufin, are oxidized by all individual CYP1 forms. The main aim of this study was to find profluorescent coumarin substrates that are more selective for the individual CYP1 forms. Eleven 3-phenylcoumarin derivatives were synthetized, their enzyme kinetic parameters were determined, and their interactions in the active sites of CYP1 enzymes were analyzed by docking and molecular dynamic simulations. All coumarin derivatives and 7-ethoxyresorufin and 7-pentoxyresorufin were oxidized by at least one CYP1 enzyme. 3-(3-Methoxyphenyl)-6-methoxycoumarin (19) was 7-O-demethylated by similar high efficiency [21-30 ML/(min.mol CYP)] by all CYP1 forms and displayed similar binding in the enzyme active sites. 3-(3-Fluoro-4-acetoxyphenyl)coumarin (14) was selectively 7-O-demethylated by CYP1A1, but with low efficiency [0.16 ML/(min mol)]. This was explained by better orientation and stronger H-bond interactions in the active site of CYP1A1 than that of CYP1A2 and CYP1B1. 3-(4-Acetoxyphenyl)-6-chlorocoumarin (20) was 7-O-demethylated most efficiently by CYP1B1 [53 ML/(min.mol CYP)], followed by CYP1A1 [16 ML/(min.mol CYP)] and CYP1A2 [0.6 ML/(min.mol CYP)]. Variations in stabilities of complexes between 20 and the individual CYP enzymes explained these differences. Compounds 14, 19, and 20 are candidates to replace traditional substrates in measuring activity of human CYP1 enzymes
Molecular docking and oxidation kinetics of 3-phenyl coumarin derivatives by human CYP2A13
CYP2A13 enzyme is expressed in human extrahepatic tissues, while CYP2A6 is a hepatic enzyme. Reactions catalysed by CYP2A13 activate tobacco-specific nitrosamines and some other toxic xenobiotics in lungs. To compare oxidation characteristics and substrate-enzyme active site interactions in CYP2A13 vs CYP2A6, we evaluated CYP2A13 mediated oxidation characteristics of 23 coumarin derivatives and modelled their interactions at the enzyme active site. CYP2A13 did not oxidise six coumarin derivatives to corresponding fluorescent 7-hydroxycoumarins. The K-m-values of the other coumarins varied 0.85-97 mu M, V-max-values of the oxidation reaction varied 0.25-60 min(-1), and intrinsic clearance varied 26-6190 kL/min*mol CYP2A13). K-m of 6-chloro-3-(3-hydroxyphenyl)-coumarin was 0.85 (0.55-1.15 95% confidence limit) mu M and V-max 0.25 (0.23-0.26) min(-1), whereas K-m of 6-hydroxy-3-(3-hydroxyphenyl)-coumarin was 10.9 (9.9-11.8) mu M and V-max 60 (58-63) min(-1). Docking analyses demonstrated that 6-chloro or 6-methoxy and 3-(3-hydroxyphenyl) or 3-(4-trifluoromethylphenyl) substituents of coumarin increased affinity to CYP2A13, whereas 3-triazole or 3-(3-acetate phenyl) or 3-(4-acetate phenyl) substituents decreased it. The active site of CYP2A13 accepts more diversified types of coumarin substrates than the hepatic CYP2A6 enzyme. New sensitive and convenient profluorescent CYP2A13 substrates were identified, such as 6-chloro-3-(3-hydroxyphenyl)-coumarin having high affinity and 6-hydroxy-3-(3-hydroxyphenyl)-coumarin with high intrinsic clearance
HX600, a synthetic agonist for RXR-Nurr1 heterodimer complex, prevents ischemia-induced neuronal damage
Ischemic stroke is amongst the leading causes of death and disabilities. The available treatments are suitable for only a fraction of patients and thus novel therapies are urgently needed. Blockage of one of the cerebral arteries leads to massive and persisting inflammatory reaction contributing to the nearby neuronal damage. Targeting the detrimental pathways of neuroinflammation has been suggested to be beneficial in conditions of ischemic stroke. Nuclear receptor 4A-family (NR4A) member Nurr1 has been shown to be a potent modulator of harmful inflammatory reactions, yet the role of Nurr1 in cerebral stroke remains unknown. Here we show for the first time that an agonist for the dimeric transcription factor Nurr1/retinoid X receptor (RXR), HX600, reduces microglia expressed proinflammatory mediators and prevents inflammation induced neuronal death in in vitro co-culture model of neurons and microglia. Importantly, HX600 was protective in a mouse model of permanent middle cerebral artery occlusion and alleviated the stroke induced motor deficits. Along with the anti-inflammatory capacity of HX600 in vitro, treatment of ischemic mice with HX600 reduced ischemia induced Iba-1, p38 and TREM2 immunoreactivities, protected endogenous microglia from ischemia induced death and prevented leukocyte infiltration. These anti-inflammatory functions were associated with reduced levels of brain lysophosphatidylcholines (lysoPCs) and acylcarnitines, metabolites related to proinflammatory events. These data demonstrate that HX600 driven Nurr1 activation is beneficial in ischemic stroke and propose that targeting Nurr1 is a novel candidate for conditions involving neuroinflammatory component.Peer reviewe
Structure-Activity Relationship Analysis of 3-Phenylcoumarin-Based Monoamine Oxidase B Inhibitors
Monoamine oxidase B (MAO-B) catalyzes deamination of monoamines such as neurotransmitters dopamine and norepinephrine. Accordingly, small-molecule MAO-B inhibitors potentially alleviate the symptoms of dopamine-linked neuropathologies such as depression or Parkinson's disease. Coumarin with a functionalized 3-phenyl ring system is a promising scaffold for building potent MAO-B inhibitors. Here, a vast set of 3-phenylcoumarin derivatives was designed using virtual combinatorial chemistry or rationally de novo and synthesized using microwave chemistry. The derivatives inhibited the MAO-B at 100 nM-1 mu M. The IC50 value of the most potent derivative 1 was 56 nM. A docking-based structure-activity relationship analysis summarizes the atom-level determinants of the MAO-B inhibition by the derivatives. Finally, the cross-reactivity of the derivatives was tested against monoamine oxidase A and a specific subset of enzymes linked to estradiol metabolism, known to have coumarin-based inhibitors. Overall, the results indicate that the 3-phenylcoumarins, especially derivative 1, present unique pharmacological features worth considering in future drug development
Asbestos-related pleural and lung fibrosis in patients with retroperitoneal fibrosis
<p>Abstract</p> <p>Background</p> <p>Retroperitoneal fibrosis (RPF) is a rare fibroinflammatory disease that leads to hydronephrosis and renal failure. In a case-control study, we have recently shown that asbestos exposure was the most important risk factor for RPF in the Finnish population. The aim of this study was to evaluate the relation of asbestos exposure to radiologically confirmed lung and pleural fibrosis among patients with RPF.</p> <p>Methods</p> <p>Chest high-resolution computed tomography (HRCT) was performed on 16 unexposed and 22 asbestos-exposed RPF patients and 18 asbestos-exposed controls. Parietal pleural plaques (PPP), diffuse pleural thickening (DPT) and parenchymal fibrosis were scored separately.</p> <p>Results</p> <p>Most of the asbestos-exposed RPF patients and half of the asbestos-exposed controls had bilateral PPP, but only a few had lung fibrosis. Minor bilateral plaques were detected in two of the unexposed RPF patients, and none had lung fibrosis. DPT was most frequent and thickest in the asbestos-exposed RPF-patients. In three asbestos-exposed patients with RPF we observed exceptionally large pleural masses that were located anteriorly in the pleural space and continued into the anterior mediastinum.</p> <p>Asbestos exposure was associated with DPT in comparisons between RPF patients and controls (case-control analysis) as well as among RPF patients (case-case analysis).</p> <p>Conclusion</p> <p>The most distinctive feature of the asbestos-exposed RPF patients was a thick DPT. An asbestos-related pleural finding was common in the asbestos-exposed RPF patients, but only a few of these patients had parenchymal lung fibrosis. RPF without asbestos exposure was not associated with pleural or lung fibrosis. The findings suggest a shared etiology for RPF and pleural fibrosis and furthermore possibly a similar pathogenetic mechanisms.</p
Lasten ympäristö ja terveys : Kansallinen CEHAP-selvitys
Painetun version ISBN 978-951-740-698-7Kansallinen lasten ympäristö ja terveys -toimintaohjelma, joka pohjautuu eurooppalaiseen toimintaohjelmaan (Children's Environment and Health Action Plan for Europe, CEHAPE
- …