1,717 research outputs found
Accuracy control in ultra-large-scale electronic structure calculation
Numerical aspects are investigated in ultra-large-scale electronic structure
calculation. Accuracy control methods in process (molecular-dynamics)
calculation are focused. Flexible control methods are proposed so as to control
variational freedoms, automatically at each time step, within the framework of
generalized Wannier state theory. The method is demonstrated in silicon
cleavage simulation with 10^2-10^5 atoms. The idea is of general importance
among process calculations and is also used in Krylov subspace theory, another
large-scale-calculation theory.Comment: 8 pages, 3 figures. To appear in J.Phys. Condens. Matter. A preprint
PDF file in better graphics is available at
http://fujimac.t.u-tokyo.ac.jp/lses/index_e.htm
Million-atom molecular dynamics simulation by order-N electronic structure theory and parallel computation
Parallelism of tight-binding molecular dynamics simulations is presented by
means of the order-N electronic structure theory with the Wannier states,
recently developed (J. Phys. Soc. Jpn. 69,3773 (2000)). An application is
tested for silicon nanocrystals of more than millions atoms with the
transferable tight-binding Hamiltonian. The efficiency of parallelism is
perfect, 98.8 %, and the method is the most suitable to parallel computation.
The elapse time for a system of atoms is 3.0 minutes by a
computer system of 64 processors of SGI Origin 3800. The calculated results are
in good agreement with the results of the exact diagonalization, with an error
of 2 % for the lattice constant and errors less than 10 % for elastic
constants.Comment: 5 pages, 3 figure
Large-scale electronic structure theory for simulating nanostructure process
Fundamental theories and practical methods for large-scale electronic
structure calculations are given, in which the computational cost is
proportional to the system size. Accuracy controlling methods for microscopic
freedoms are focused on two practical solver methods, Krylov-subspace method
and generalized-Wannier-state method. A general theory called the
'multi-solver' scheme is also formulated, as a hybrid between different solver
methods. Practical examples are carried out in several insulating and metallic
systems with 10^3-10^5 atoms. All the theories provide general guiding
principles of constructing an optimal calculation for simulating nanostructure
processes, since a nanostructured system consists of several competitive
regions, such as bulk and surface regions, and the simulation is designed to
reproduce the competition with an optimal computational cost.Comment: 19 pages, 6 figures. To appear in J. Phys. Cond. Matt. A preprint PDF
file in better graphics is available at
http://fujimac.t.u-tokyo.ac.jp/lses/index_e.htm
Krylov Subspace Method for Molecular Dynamics Simulation based on Large-Scale Electronic Structure Theory
For large scale electronic structure calculation, the Krylov subspace method
is introduced to calculate the one-body density matrix instead of the
eigenstates of given Hamiltonian. This method provides an efficient way to
extract the essential character of the Hamiltonian within a limited number of
basis set. Its validation is confirmed by the convergence property of the
density matrix within the subspace. The following quantities are calculated;
energy, force, density of states, and energy spectrum. Molecular dynamics
simulation of Si(001) surface reconstruction is examined as an example, and the
results reproduce the mechanism of asymmetric surface dimer.Comment: 7 pages, 3 figures; corrected typos; to be published in Journal of
the Phys. Soc. of Japa
Linear Algebraic Calculation of Green's function for Large-Scale Electronic Structure Theory
A linear algebraic method named the shifted
conjugate-orthogonal-conjugate-gradient method is introduced for large-scale
electronic structure calculation. The method gives an iterative solver
algorithm of the Green's function and the density matrix without calculating
eigenstates.The problem is reduced to independent linear equations at many
energy points and the calculation is actually carried out only for a single
energy point. The method is robust against the round-off error and the
calculation can reach the machine accuracy. With the observation of residual
vectors, the accuracy can be controlled, microscopically, independently for
each element of the Green's function, and dynamically, at each step in
dynamical simulations. The method is applied to both semiconductor and metal.Comment: 10 pages, 9 figures. To appear in Phys. Rev. B. A PDF file with
better graphics is available at http://fujimac.t.u-tokyo.ac.jp/lses
Nemo: a computational tool for analyzing nematode locomotion
The nematode Caenorhabditis elegans responds to an impressive range of
chemical, mechanical and thermal stimuli and is extensively used to investigate
the molecular mechanisms that mediate chemosensation, mechanotransduction and
thermosensation. The main behavioral output of these responses is manifested as
alterations in animal locomotion. Monitoring and examination of such
alterations requires tools to capture and quantify features of nematode
movement. In this paper, we introduce Nemo (nematode movement), a
computationally efficient and robust two-dimensional object tracking algorithm
for automated detection and analysis of C. elegans locomotion. This algorithm
enables precise measurement and feature extraction of nematode movement
components. In addition, we develop a Graphical User Interface designed to
facilitate processing and interpretation of movement data. While, in this
study, we focus on the simple sinusoidal locomotion of C. elegans, our approach
can be readily adapted to handle complicated locomotory behaviour patterns by
including additional movement characteristics and parameters subject to
quantification. Our software tool offers the capacity to extract, analyze and
measure nematode locomotion features by processing simple video files. By
allowing precise and quantitative assessment of behavioral traits, this tool
will assist the genetic dissection and elucidation of the molecular mechanisms
underlying specific behavioral responses.Comment: 12 pages, 2 figures. accepted by BMC Neuroscience 2007, 8:8
Resolving the Hard X-ray Emission of GX 5-1 with INTEGRAL
We present the study of one year of INTEGRAL data on the neutron star low
mass X-ray binary GX 5-1. Thanks to the excellent angular resolution and
sensitivity of INTEGRAL, we are able to obtain a high quality spectrum of GX
5-1 from ~5 keV to ~100 keV, for the first time without contamination from the
nearby black hole candidate GRS 1758-258 above 20 keV. During our observations,
GX 5-1 is mostly found in the horizontal and normal branch of its hardness
intensity diagram. A clear hard X-ray emission is observed above ~30 keV which
exceeds the exponential cut-off spectrum expected from lower energies. This
spectral flattening may have the same origin of the hard components observed in
other Z sources as it shares the property of being characteristic to the
horizontal branch. The hard excess is explained by introducing Compton
up-scattering of soft photons from the neutron star surface due to a thin hot
plasma expected in the boundary layer. The spectral changes of GX 5-1 downward
along the "Z" pattern in the hardness intensity diagram can be well described
in terms of monotonical decrease of the neutron star surface temperature. This
may be a consequence of the gradual expansion of the boundary layer as the mass
accretion rate increases.Comment: 10 pages, 17 figures, accepted for publication in A&
Cerebral blood flow and behavioural effects of caffeine in habitual and non-habitual consumers of caffeine: A near infrared spectroscopy study
Caffeine has been shown to modulate cerebral blood flow, with little evidence of tolerance to these effects following habitual use. However, previous studies have focused on caffeine levels much higher than those found in dietary servings and have compared high caffeine consumers with low consumers rather than 'non-consumers'. The current placebo-controlled double-blind, balanced-crossover study employed near infrared spectroscopy to monitor pre-frontal cerebral-haemodynamics at rest and during completion of tasks that activate the pre-frontal cortex. Twenty healthy young habitual and non-habitual consumers of caffeine received 75mg caffeine or placebo. Caffeine significantly decreased cerebral blood flow but this was subject to a significant interaction with consumption status, with no significant effect being shown in habitual consumers and an exaggerated effect in non-habitual consumers. These findings suggest that caffeine, at levels typically found in a single dietary serving, is able to modulate cerebral blood flow but these effects are subject to tolerance
O(N) methods in electronic structure calculations
Linear scaling methods, or O(N) methods, have computational and memory
requirements which scale linearly with the number of atoms in the system, N, in
contrast to standard approaches which scale with the cube of the number of
atoms. These methods, which rely on the short-ranged nature of electronic
structure, will allow accurate, ab initio simulations of systems of
unprecedented size. The theory behind the locality of electronic structure is
described and related to physical properties of systems to be modelled, along
with a survey of recent developments in real-space methods which are important
for efficient use of high performance computers. The linear scaling methods
proposed to date can be divided into seven different areas, and the
applicability, efficiency and advantages of the methods proposed in these areas
is then discussed. The applications of linear scaling methods, as well as the
implementations available as computer programs, are considered. Finally, the
prospects for and the challenges facing linear scaling methods are discussed.Comment: 85 pages, 15 figures, 488 references. Resubmitted to Rep. Prog. Phys
(small changes
A vertical diatomic artificial molecule in the intermediate coupling regime in a parallel and perpendicular magnetic field
We present experimental results for the ground state electrochemical
potentials of a few electron semiconductor artificial molecule made by
vertically coupling two quantum dots, in the intermediate coupling regime, in
perpendicular and parallel magnetic fields up to 5 T. We perform a quantitative
analysis based on local-spin density functional theory. The agreement between
theoretical and experimental results is good, and the phase transitions are
well reproduced.Comment: Typeset using Revtex, 13 pages and 8 Postscript figure
- …