849 research outputs found

    Electro-Chemo-Mechanical Model for Polymer Electrolytes

    Full text link
    Polymer electrolytes (PEs) are promising candidates for use in next-generation high-voltage batteries, as they possess advantageous elastic and electrochemical properties. However, PEs still suffer from low ionic conductivity and need to be operated at higher temperatures. Furthermore, the wide variety of different types of PEs and the complexity of the internal interactions constitute challenging tasks for progressing towards a systematic understanding of PEs. Here, we present a continuum transport theory which enables a straight-forward and thermodynamically consistent method to couple different aspects of PEs relevant for battery performance. Our approach combines mechanics and electrochemistry in non-equilibrium thermodynamics, and is based on modeling the free energy, which comprises all relevant bulk properties. In our model, the dynamics of the polymer-based electrolyte are formulated relative to the highly elastic structure of the polymer. For validation, we discuss a benchmark polymer electrolyte. Based on our theoretical description, we perform numerical simulations and compare the results with data from the literature. In addition, we apply our theoretical framework to a novel type of single-ion conducting PE and derive a detailed understanding of the internal dynamics.Comment: 16 pages, 8 figure

    Electro-Chemo-Mechanical Model for Polymer Electrolytes

    Get PDF
    Polymer electrolytes (PEs) are promising candidates for use in next-generation high-voltage batteries, as they possess advantageous elastic and electrochemical properties. However, PEs still suffer from low ionic conductivity and need to be operated at higher temperatures. Furthermore, the wide variety of different types of PEs and the complexity of the internal interactions constitute challenging tasks for progressing toward a systematic understanding of PEs. Here, we present a continuum transport theory which enables a straight-forward and thermodynamically consistent method to couple different aspects of PEs relevant for battery performance. Our approach combines mechanics and electrochemistry in non-equilibrium thermodynamics, and is based on modeling the free energy, which comprises all relevant bulk properties. In our model, the dynamics of the polymer-based electrolyte are formulated relative to the highly elastic structure of the polymer. For validation, we discuss a benchmark polymer electrolyte. Based on our theoretical description, we perform numerical simulations and compare the results with data from the literature. In addition, we apply our theoretical framework to a novel type of single-ion conducting PE and derive a detailed understanding of the internal dynamics

    Pore-forming peptide of pathogenic Entamoeba histolytica.

    Full text link

    How a plantar pressure-based, tongue-placed tactile biofeedback modifies postural control mechanisms during quiet standing

    Full text link
    The purpose of the present study was to determine the effects of a plantar pressure-based, tongue-placed tactile biofeedback on postural control mechanisms during quiet standing. To this aim, sixteen young healthy adults were asked to stand as immobile as possible with their eyes closed in two conditions of No-biofeedback and Biofeedback. Centre of foot pressure (CoP) displacements, recorded using a force platform, were used to compute the horizontal displacements of the vertical projection the centre of gravity (CoGh) and those of the difference between the CoP and the vertical projection of the CoG (CoP-CoGv). Altogether, the present findings suggest that the main way the plantar pressure-based, tongue-placed tactile biofeedback improves postural control during quiet standing is via both a reduction of the correction thresholds and an increased efficiency of the corrective mechanism involving the CoGh displacements

    Alternative reconstruction after pancreaticoduodenectomy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pancreaticoduodenectomy is the procedure of choice for tumors of the head of the pancreas and periampulla. Despite advances in surgical technique and postoperative care, the procedure continues to carry a high morbidity rate. One of the most common morbidities is delayed gastric emptying with rates of 15%–40%. Following two prolonged cases of delayed gastric emptying, we altered our reconstruction to avoid this complication altogether. Subsequently, our patients underwent a classic pancreaticoduodenectomy with an undivided <it>Roux-en-Y </it>technique for reconstruction.</p> <p>Methods</p> <p>We reviewed the charts of our last 13 Whipple procedures evaluating them for complications, specifically delayed gastric emptying. We compared the outcomes of those patients to a control group of 15 patients who underwent the Whipple procedure with standard reconstruction.</p> <p>Results</p> <p>No instances of delayed gastric emptying occurred in patients who underwent an undivided <it>Roux-en-Y </it>technique for reconstruction. There was 1 wound infection (8%), 1 instance of pneumonia (8%), and 1 instance of bleeding from the gastrojejunal staple line (8%). There was no operative mortality.</p> <p>Conclusion</p> <p>Use of the undivided <it>Roux-en-Y </it>technique for reconstruction following the Whipple procedure may decrease the incidence of delayed gastric emptying. In addition, it has the added benefit of eliminating bile reflux gastritis. Future randomized control trials are recommended to further evaluate the efficacy of the procedure.</p

    Microevolution of extensively drug-resistant tuberculosis in Russia.

    Full text link
    Extensively drug-resistant (XDR) tuberculosis (TB), which is resistant to both first- and second-line antibiotics, is an escalating problem, particularly in the Russian Federation. Molecular fingerprinting of 2348 Mycobacterium tuberculosis isolates collected in Samara Oblast, Russia, revealed that 72%belonged to the Beijing lineage, a genotype associated with enhanced acquisition of drug resistance and increased virulence. Whole-genome sequencing of 34 Samaran isolates, plus 25 isolates representing global M. tuberculosis complex diversity, revealed that Beijing isolates originating in Eastern Europe formed a monophyletic group. Homoplasic polymorphisms within this clade were almost invariably associated with antibiotic resistance, indicating that the evolution of this population is primarily driven by drug therapy. Resistance genotypes showed a strong correlation with drug susceptibility phenotypes. A novel homoplasic mutation in rpoC, found only in isolates carrying a common rpoB rifampicin-resistance mutation, may play a role in fitness compensation. Most multidrug-resistant (MDR) isolates also had mutations in the promoter of a virulence gene, eis, which increase its expression and confer kanamycin resistance. Kanamycin therapy may thus select for mutants with increased virulence, helping preserve bacterial fitness and promoting transmission of drug-resistant TB strains. The East European clade was dominated by two MDR clusters, each disseminated across Samara. Polymorphisms conferring fluoroquinolone resistance were independently acquired multiple times within each cluster, indicating that XDR TB is currently not widely transmitted. © 2012 by Cold Spring Harbor Laboratory Press

    On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis

    Get PDF
    In this article we deal with a class of strongly coupled parabolic systems that encompasses two different effects: degenerate diffusion and chemotaxis. Such classes of equations arise in the mesoscale level modeling of biomass spreading mechanisms via chemotaxis. We show the existence of an exponential attractor and, hence, of a finite-dimensional global attractor under certain 'balance conditions' on the order of the degeneracy and the growth of the chemotactic function

    Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up

    Get PDF
    We investigate a particle system which is a discrete and deterministic approximation of the one-dimensional Keller-Segel equation with a logarithmic potential. The particle system is derived from the gradient flow of the homogeneous free energy written in Lagrangian coordinates. We focus on the description of the blow-up of the particle system, namely: the number of particles involved in the first aggregate, and the limiting profile of the rescaled system. We exhibit basins of stability for which the number of particles is critical, and we prove a weak rigidity result concerning the rescaled dynamics. This work is complemented with a detailed analysis of the case where only three particles interact

    Multilateral Environmental Agreements in the WTO: Silence Speaks Volumes

    Get PDF
    This study contributes to the debate concerning the appropriate role of multilateral environmental agreements (MEAs) in in WTO dispute settlement. Its distinguishing feature is that it seeks to address this relationship in light of the reason why the parties have chosen to separate their obligations into two bodies of law without providing an explicit nexus between them. The basic conclusion is that legislators’ silence concerning this relationship should speak volumes to WTO adjudicating bodies: MEAs should not be automatically understood as imposing legally binding obligations on WTO Members, but could be used as sources of factual information

    The quest for companions to post-common envelope binaries: I. Searching a sample of stars from the CSS and SDSS

    Full text link
    As part of an ongoing collaboration between student groups at high schools and professional astronomers, we have searched for the presence of circum-binary planets in a bona-fide unbiased sample of twelve post-common envelope binaries (PCEBs) from the Catalina Sky Survey (CSS) and the Sloan Digital Sky Survey (SDSS). Although the present ephemerides are significantly more accurate than previous ones, we find no clear evidence for orbital period variations between 2005 and 2011 or during the 2011 observing season. The sparse long-term coverage still permits O-C variations with a period of years and an amplitude of tens of seconds, as found in other systems. Our observations provide the basis for future inferences about the frequency with which planet-sized or brown-dwarf companions have either formed in these evolved systems or survived the common envelope (CE) phase.Comment: accepted by A&
    • …
    corecore