42 research outputs found

    Engineering kidneys from simple cell suspensions:an exercise in self-organization

    Get PDF
    Increasing numbers of people approaching and living with end-stage renal disease and failure of the supply of transplantable kidneys to keep pace has created an urgent need for alternative sources of new organs. One possibility is tissue engineering of new organs from stem cells. Adult kidneys are arguably too large and anatomically complex for direct construction, but engineering immature kidneys, transplanting them, and allowing them to mature within the host may be more feasible. In this review, we describe a technique that begins with a suspension of renogenic stem cells and promotes these cells’ self-organization into organ rudiments very similar to foetal kidneys, with a collecting duct tree, nephrons, corticomedullary zonation and extended loops of Henle. The engineered rudiments vascularize when transplanted to appropriate vessel-rich sites in bird eggs or adult animals, and show preliminary evidence for physiological function. We hope that this approach might one day be the basis of a clinically useful technique for renal replacement therapy

    A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease

    Get PDF
    A genome-wide survival analysis of 14,406 Alzheimer's disease (AD) cases and 25,849 controls identified eight previously reported AD risk loci and 14 novel loci associated with age at onset. Linkage disequilibrium score regression of 220 cell types implicated the regulation of myeloid gene expression in AD risk. The minor allele of rs1057233 (G), within the previously reported CELF1 AD risk locus, showed association with delayed AD onset and lower expression of SPI1 in monocytes and macrophages. SPI1 encodes PU.1, a transcription factor critical for myeloid cell development and function. AD heritability was enriched within the PU.1 cistrome, implicating a myeloid PU.1 target gene network in AD. Finally, experimentally altered PU.1 levels affected the expression of mouse orthologs of many AD risk genes and the phagocytic activity of mouse microglial cells. Our results suggest that lower SPI1 expression reduces AD risk by regulating myeloid gene expression and cell function

    Engagement Across Developmental Periods

    Get PDF
    The goal of this chapter is to provide a cohesive developmental framework and foundation for which to understand student engagement across early childhood, middle childhood, and adolescence. Guided by the bioecological theory of human development and the person-environment fit perspective, this chapter extends Finn\u27s participation-identification model of engagement by mapping student engagement within a larger developmental sequence. This chapter discusses student engagement within specific developmental periods that are tied to the developmental tasks, opportunities, and challenges unique to early childhood, middle childhood, and adolescence. Student engagement is found to be a nuanced developmental outcome, and the differences may be a result of the maturation of biological, cognitive, and socioemotional developmental tasks and the changing contextual landscape for the children and adolescents. Recommendations for future research as well as policy implications are also discussed
    corecore