1,807 research outputs found
Heun Functions and the energy spectrum of a charged particle on a sphere under magnetic field and Coulomb force
We study the competitive action of magnetic field, Coulomb repulsion and
space curvature on the motion of a charged particle. The three types of
interaction are characterized by three basic lengths: l_{B} the magnetic
length, l_{0} the Bohr radius and R the radius of the sphere. The energy
spectrum of the particle is found by solving a Schr\"odinger equation of the
Heun type, using the technique of continued fractions. It displays a rich set
of functioning regimes where ratios \frac{R}{l_{B}} and \frac{R}{l_{0}} take
definite values.Comment: 12 pages, 5 figures, accepted to JOPA, november 200
Non-equilibrium hysteresis and spin relaxation in the mixed-anisotropy dipolar coupled spin-glass LiHoErF
We present a study of the model spin-glass LiHoErF using
simultaneous AC susceptibility, magnetization and magnetocaloric effect
measurements along with small angle neutron scattering (SANS) at sub-Kelvin
temperatures. All measured bulk quantities reveal hysteretic behavior when the
field is applied along the crystallographic c axis. Furthermore avalanche-like
relaxation is observed in a static field after ramping from the
zero-field-cooled state up to Oe. SANS measurements are employed to
track the microscopic spin reconfiguration throughout both the hysteresis loop
and the related relaxation. Comparing the SANS data to inhomogeneous mean-field
calculations performed on a box of one million unit cells provides a real-space
picture of the spin configuration. We discover that the avalanche is being
driven by released Zeeman energy, which heats the sample and creates positive
feedback, continuing the avalanche. The combination of SANS and mean-field
simulations reveal that the conventional distribution of cluster sizes is
replaced by one with a depletion of intermediate cluster sizes for much of the
hysteresis loop.Comment: 6 pages, 4 figure
Observation of plaquette fluctuations in the spin-1/2 honeycomb lattice
Quantum spin liquids are materials that feature quantum entangled spin
correlations and avoid magnetic long-range order at T = 0 K. Particularly
interesting are two-dimensional honeycomb spin lattices where a plethora of
exotic quantum spin liquids have been predicted. Here, we experimentally study
an effective S=1/2 Heisenberg honeycomb lattice with competing nearest and
next-nearest neighbor interactions. We demonstrate that YbBr avoids order
down to at least T=100 mK and features a dynamic spin-spin correlation function
with broad continuum scattering typical of quantum spin liquids near a quantum
critical point. The continuum in the spin spectrum is consistent with plaquette
type fluctuations predicted by theory. Our study is the experimental
demonstration that strong quantum fluctuations can exist on the honeycomb
lattice even in the absence of Kitaev-type interactions, and opens a new
perspective on quantum spin liquids.Comment: 32 pages, 7 Figure
Huge Transverse Magnetization in the Field-Induced Phase of the Antiferromagnetic Molecular Wheel CsFe8
The 1H-NMR spectrum and nuclear relaxation rate 1/T_1 in the
antiferromagnetic wheel CsFe8 were measured to characterize the previously
observed magnetic field-induced low-temperature phase around the level crossing
at 8 T. The data show that the phase is characterized by a huge staggered
transverse polarization of the electronic Fe spins, and the opening of a gap,
providing microscopic evidence for the interpretation of the phase as a
field-induced magneto-elastic instability.Comment: 5 pages, 4 figures, REVTEX4, to appear in PR
Recommended from our members
An algal enzyme required for biosynthesis of the most abundant marine carotenoids.
Fucoxanthin and its derivatives are the main light-harvesting pigments in the photosynthetic apparatus of many chromalveolate algae and represent the most abundant carotenoids in the world's oceans, thus being major facilitators of marine primary production. A central step in fucoxanthin biosynthesis that has been elusive so far is the conversion of violaxanthin to neoxanthin. Here, we show that in chromalveolates, this reaction is catalyzed by violaxanthin de-epoxidase-like (VDL) proteins and that VDL is also involved in the formation of other light-harvesting carotenoids such as peridinin or vaucheriaxanthin. VDL is closely related to the photoprotective enzyme violaxanthin de-epoxidase that operates in plants and most algae, revealing that in major phyla of marine algae, an ancient gene duplication triggered the evolution of carotenoid functions beyond photoprotection toward light harvesting
The Missing Odderon
In contrast to theoretical expectations, experimental results at sqrt(s)=200
GeV for the reaction gamma p --> pi0 X show no evidence for odderon exchange.
The upper limit on the cross section is an order of magnitude smaller than the
theoretical estimate. It is argued that chiral symmetry leads to a large
suppression, taking the thoeretical estimates well below the data. Two
additional arguments are presented which may decrease the theoretical estimate
further. The calculations are more sensitive to the assumptions made in
evaluating the hadronic scattering amplitude than in the processes considered
previously and lattice gauge calculations indicate that the odderon intercept
may be appreciably lower than usually assumed. These two latter effects are
particularly relevant for the reactions gamma p --> f2(1270)X and gamma p -->
a2(1320)X for which the data upper limits are also below the theoretical
predictions, but not so dramatically as for gamma p --> pi0 X.Comment: 12 pages, 3 figure
Connective neck evolution and conductance steps in hot point contacts
Dynamic evolution of the connective neck in Al and Pb mechanically
controllable break junctions was studied during continuous approach of
electrodes at bias voltages V_b up to a few hundred mV. A high level of power
dissipation (10^-4 - 10^-3 W) and high current density (j > 10^10 A/cm^2) in
the constriction lead to overheating of the contact area, electromigration and
current-enhanced diffusion of atoms out of the "hot spot". At a low electrode
approach rate (10 - 50 pm/s) the transverse dimension of the neck and the
conductance of the junction depend on V_b and remain nearly constant over the
approach distance of 10 - 30 nm. For V_b > 300 mV the connective neck consists
of a few atoms only and the quantum nature of conductance manifests itself in
abrupt steps and reversible jumps between two or more levels. These features
are related to an ever changing number of individual conductance channels due
to the continuous rearrangement in atomic configuration of the neck, the
recurring motion of atoms between metastable states, the formation and breaking
of isolated one-atom contacts and the switching between energetically
preferable neck geometries.Comment: 21 pages 10 figure
High homogeneous freezing onsets of sulfuric acid aerosol at cirrus temperatures
Homogeneous freezing of aqueous solution aerosol particles is an important process for cloud ice formation in the upper troposphere. There the air temperature is low, the ice supersaturation can be high and the concentration of ice-nucleating particles is too low to initiate and dominate cirrus cloud formation by heterogeneous ice nucleation processes. The most common description to quantify homogeneous freezing processes is based on the water activity criterion (WAC) as proposed by Koop et al. (2000). The WAC describes the homogeneous nucleation rate coefficients only as a function of the water activity, which makes this approach well applicable in numerical models. In this study, we investigate the homogeneous freezing behavior of aqueous sulfuric acid aerosol particles by means of a comprehensive collection of laboratory-based homogeneous freezing experiments conducted at the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud simulation chamber, which were conducted as part of 17 measurement campaigns since 2007. The most recent experiments were conducted during October 2020 with special emphasis on temperatures below 200 K. Aqueous sulfuric acid aerosol particles of high purity were generated by particle nucleation in a gas flow composed of clean synthetic air and sulfuric acid vapor, which was added to the AIDA chamber. The resulting chamber aerosol had number concentrations from 30 cm up to several thousand per cubic centimeter with particle diameters ranging from about 30 nm to 1.1 µm. Homogeneous freezing of the aerosol particles was measured at simulated cirrus formation conditions in a wide range of temperatures between 185 and 230 K with a steady increase of relative humidity during each experiment. At temperatures between about 205 K and about 230 K, the AIDA results agree well with the WAC-based predictions of homogeneous freezing onsets. At lower temperatures, however, the AIDA results show an increasing deviation from the WAC-based predictions towards higher freezing onsets. For temperatures between 185 and 205 K, the WAC-based ice saturation ratios for homogeneous freezing onsets increase from about 1.6 to 1.7, whereas the AIDA measurements show an increase from about 1.7 to 2.0 in the same temperature range. Based on the experimental results of our direct measurements, we suggest a new fit line to formulate the onset conditions of homogeneous freezing of sulfuric acid aerosol particles as an isoline for nucleation rate coefficients between 5×10 and 10 cm s. The potential significant impacts of the higher homogeneous freezing thresholds, as directly observed in the AIDA experiments under simulated cirrus formation conditions, on the model prediction of cirrus cloud occurrence and related cloud radiative effects are discussed
Phase diagram of YBaCuO at TT based on Cu(2) transverse nuclear relaxation
Two maxima in transverse relaxation rate of Cu(2) nuclei in
YBaCuO are observed, at T = 35 K and T = 47 K. Comparison of
the Cu(2) and Cu(2) rates at T = 47 K indicates the magnetic
character of relaxation. The enhancement at T = 47 K of fluctuating local
magnetic fields perpendicular to the CuO planes is connected with the
critical fluctuations of orbital currents. Maximum at T = 35 K is connected
with the appearance of inhomogeneous supeconducting phase. Together with data
published to date, our experimental results allow to suggest a qualitatively
new phase diagram of the superconducting phase.Comment: 4 LaTEX pages + 3 figures in *.ps forma
- …